Description
5SHX1960L0006 3BHB016120R0002 Система возбуждения DCS ABB
Швейцария, и входит в десятку крупнейших швейцарских транснациональных корпораций.5SHX1960L0006 3BHB016120R0002
химическая, нефтехимическая, фармацевтическая, целлюлозно – бумажная, нефтепереработка; Оборудование приборов: электронные приборы, телевизоры и оборудование для передачи данных,
генераторы, гидротехнические сооружения; Каналы связи: интегрированные системы, системы сбора и распространения;5SHX1960L0006 3BHB016120R0002Строительная промышленность: коммерческое и промышленное строительство.
(5) Perform predictive maintenance, analyze machine operating conditions, determine the main
causes of failures, and predict component failures to avoid unplanned downtime.
Traditional quality improvement programs include Six Sigma, Deming Cycle, Total Quality Management (TQM), and Dorian Scheinin’s
Statistical Engineering (SE) [6]. Methods developed in the 1980s and 1990s are typically applied to small amounts
of data and find univariate relationships between participating factors. The use of the MapReduce paradigm to simplify data processing in
large data sets and its further development have led to the mainstream proliferation of big data analytics [7]. Along with the development of
machine learning technology, the development of big data analytics has provided a series of new tools that can be applied to manufacturing
analysis. These capabilities include the ability to analyze gigabytes of data in batch and streaming modes, the ability to find complex multivariate
nonlinear relationships among many variables, and machine learning algorithms that separate causation from correlation.
Millions of parts are produced on production lines, and data on thousands of process and quality measurements are collected for them, which is
important for improving quality and reducing costs. Design of experiments (DoE), which repeatedly explores thousands of causes through
controlled experiments, is often too time-consuming and costly. Manufacturing experts rely on their domain knowledge to detect key
factors that may affect quality and then run
DoEs based on these factors. Advances in big data analytics and machine learning enable the detection of critical factors that effectively
impact quality and yield. This, combined with domain knowledge, enables rapid detection of root causes of failures. However,
there are some unique data science challenges in manufacturing.
(1) Unequal costs of false alarms and false negatives. When calculating accuracy, it must be recognized that false alarms
and false negatives may have unequal costs. Suppose a false negative is a bad part/instance that was wrongly predicted to
be good. Additionally, assume that a false alarm is a good part that was incorrectly predicted as bad. Assuming further that
the parts produced are safety critical, incorrectly predicting that bad parts are good (false negatives) can put human lives
at risk. Therefore, false negatives can be much more costly than false alarms. This trade-off needs to be considered when
translating business goals into technical goals and candidate evaluation methods.
57M300B5A PORTESCAP micro-motor
3IF260.60-1 B&R 2005 CPU or programmable interface processor
5AP1130.156C-000 B&R Automation Panel
VARIAN 100010077-06 VARIAN MLC Interface Plug-In Board
VARIAN 100010078-01 VARIAN MLC Interface Plug-In Board
MVME5500 MOTOROLA VMEbus Single-Board Computer
UDD406A 3BHE041465P201 ABB Input output module
PM573-ETH ABB Logic Controller
SBRIO-9607 NI CompactRIO Single-Board Controller
T16054 Flex Kleen Control
R911268888 Rexroth Servo power supply
PCI-6251 NI Multifunction I/O Module
PC834-001-T Kollmorgen Brushless Servo Drive
P0924DB FOXBORO terminal base
P0917MG FOXBORO Terminal block Module
P0916PW FOXBORO Assembly 32 channel contact sensing
PO916NJ-OB FOXBORO DIN Mount Base
P0914XA FOXBORO terminal
VP325 02X Concurrent Technologies Processor Single Board Computer
XV-440-10TVB-1-20 ETON Touch panel
XVS-440-10MPI-1-10 ETON Touch panel
P0904HA FOXBORO Power Supply Module
SQ-300I B&W Hybrid automatic voltage control
P0400VP-0N FOXBORO Communication Processor
P30B04010PCKST SANYO DENKI SERVO MOTOR
SM-100-40-080-P0-45-S1-B0 ELAU Servo motor
MDB-8E Sartorius Weight bearing sensor
MC-TAMR04 Honeywell Low Level Analog Input Multiplexer
KJ3002X1-BF1 Emerson RTD Card
K2-400 DI470A KEBA Input Card
KEMRO K2-400 CP 450C KEBA PLC LCD monitor Liquid Crystal
INFO-4KP-94161B INDEL AG Communication module
IC200PWR101E GE VersaMax power supply module
HP-5517B Agilent Laser interferometer
IC693CPU364 GE single-slot Central Processing Unit
H201TI GE small on-line early warning transmitter
FBM232 P0926GW FOXBORO Ethernet Communication Module
FBM217 P0914TR FOXBORO Input Module
H92A0K9V0H00 FOXBORO Electrical conductivity transmitter
FCM10E FOXBORO I/A SERIES COMMUNICATION MODULE
EMC1600 EtherWAN 16-Bay Media Converter and Ethernet Extender Chassis
DMC-4143 Galil Motion Controller
DS200SIOBH1ABA GE I/O Control Board
D674A905U01 ABB Cartridge U-low HART / Std. FET 300
CE4050S2K1C0 EMERSON I/O Interface Carrier with Carrier Shield Bar
C400/10/1/1/1/00 SCHNEIDER SERVO CONTROLLER
ATCS-15 SCHUMACHER Temperature control unit
ACC-8E PMAC-2 602469-103 Delta Tau Breakout Terminal Block Board
A90L-0001-0515R FANUC Spindle motor cooling fan
350005-02-04-00-00-00 Bently Nevada DC IN Card Input Module
330930-065-01-05 Bently Nevada NSv Extension Cable
SJDE-08ANA-OY YASKAWA SERVO DRIVE MECHATROLINK
330180-51-00 Bently Nevada 3300XL Proximitor Sensor
330130-040-00-00 Bently Nevada 3300 XL Standard Extension Cable
149992-01 Bently Nevada 16 Channel Relay Output Module
126615-01 Bently Nevada Proximitor I/O Module
Reviews
There are no reviews yet.