Description
hardware flow control. It is an ideal choice in the field of industrial automation.
According to reports, ABB”s technical expertise and experience in many industries will be combined with Microsoft”s Azure intelligent cloud system and B2B
engineering capabilities to create greater value for customers. Combined with ABB”s more than 70 million connected devices installed globally and more than
70,000 running control systems, ABB and Microsoft will join forces to create one of the world”s largest IIoT industrial cloud platforms.
It is worth noting that IoT expert Guido Jouret (formerly general manager of Cisco’s IoT department) became the group’s chief digital officer on October 1, 2016.
This marks that ABB is accelerating digital transformation and comprehensively building a new “Internet of Things+” ecosystem. ABB also hopes to obtain higher
profits from this, and has proposed a financial target for 2015-2020 of pre-tax profit growth of 11%-16%.
FANUC
FANUC recently established the IoT platform Fanuc Intelligent Edge Link and Drive (FIELD), which uses NVIDIA artificial intelligence system. FIELD can realize the
connection of machine tools, robots, peripheral equipment and sensors in the automation system and provide advanced data analysis to improve the production quality,
efficiency, flexibility and equipment reliability in the production process – thereby improving the overall efficiency of the equipment ( OEE) and promote the improvement of production profits.
The system can also improve robot productivity through artificial intelligence and bring autonomous learning capabilities to automated factory robots around the
world. FANUC will use a series of GPUs and deep learning software designed and produced by NVIDIA to enable AI artificial intelligence to be used in clouds, data centers
and embedded devices.
When talking about the cooperation with FANUC, NVIDIA co-founder and CEO Jensen Huang said that the era of AI artificial intelligence has officially arrived.
Through the deep learning function of GPU, it will stimulate a
new wave of software learning and machine inference calculations. The most exciting of these is the ability of robots to understand their surroundings and
interact with humans. NVIDIA is very happy to work with FANUC, the global leader in automated factories and robots, to build intelligent machines to benefit the future of mankind.
It is reported that FIELD continues the success of the existing Fanuc ZDT (zero downtime function), which effectively combines Cisco cloud technology,
IoT data collection software and point-to-point security. After connecting the robot through the use of an industrial Ethernet switch, it is then connected to Cisco”s UCS server – the system runs
based on FANUC and Cisco”s ZDT data collection software. Automotive industry users can immediately realize reductions in downtime and cost savings after using the system.
FIELD provides users and application developers with advanced machine learning and artificial intelligence capabilities and brings manufacturing to
new heights of productivity and efficiency. Currently, FANUC has applied these new technologies to robotic bulk picking, production anomaly detection and fault
prediction. Because FIELD combines artificial intelligence and cutting-edge computer technology, distributed learning is possible. The operating data of robots and
equipment are processed in real time on the network,
which also enables more intelligent coordination of production between various equipment, making complex production coordination that was previously difficult to
achieve easily completed.
In fact, many years ago, FANUC began to cooperate with Cisco to carry out the “non-stop” zero downTIme plan. In the plan, FANUC and Cisco will join forces to
build an Internet of Things system that will allow FANUC to supervise
every robot in the factory, predict abnormal conditions of the robots, and send more technicians to repair the robots before problems occur. So far, the program has
tested 2,500 robots, including FANUC”s major customer GM General Motors. According to FANUC, the test program saved customers $38 million.
YASKAWA
After talking so much about the Internet of Things strategy of the industrial robot giant, let’s take a break here at Yaskawa and talk about the past.
Midea and KUKA have officially received their marriage certificates, but you must know that as early as August 2015, Midea announced its
robot strategy and established two joint venture subsidiaries with Japan”s Yaskawa Electric.
The two subsidiaries are respectively for industrial robots and service robots, including Guangdong Yaskawa Midea Industrial Robot Co.
, Ltd. (Midea”s equity accounted for 49%) and Guangdong Midea Yaskawa Service Robot Co., Ltd. (Midea”s equity accounted for 60%).
This shows that as early as 2015, Midea was actually “in love” with Yaskawa, but by 2016, she married Kuka.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
05704-A-0121 honeywell Switch quantity input module
05701-A-0550 HONEYWELL Analog output module
05701-A-0361 HONEYWELL Power control panel
05701-A-0511 honeywell Analog input module
05701-A-0351 honeywell Modem module
05701-A-0330 HONEYWELL PLC/DCS module
05701-A-0326 honeywell Analyzing Field Interface Cards
05701-A-0325 HONEYWELL DC input card
05701-A-0302 HONEYWELL Control card
05701-A-0301 HONEYWELL Control module
TG-13 8516-038 Woodward Steam Turbine mechanical hydraulic governor
WOODWARD 8440-2145 Steam turbine governor
9907-838 Woodward Steam Turbine digital governor
9907-252 WOODWARD Digital speed governor
9907-167 WOODWARD Digital controller
WOODWARD 9907-164 Turbine expander module
9907-165 WOODWARD Speed regulating controller
WOODWARD 9907-164 Turbine expander module
9907-162 WOODWARD CNC system key panel
9907-1200 WOODWARD current pressure converter
9907-149 WOODWARD High speed counting module
9907-1200 WOODWARD current pressure converter
9905-973 WOODWARD Adjusting control system
8701-758 5601-1126 WOODWARD Electronic speed control
8446-1019 woodward Governor control module
8402-319 8402-119 WOODWARD actuator
8440-1713/D WOODWARD controller
WOODWARD 8237-1006 505 Steam turbine governor
WOODWARD 8200-1300 Steam Turbine governor 505 servo system
5501-471 WOODWARD Driver program module
WOODWARD 5501-470 Module card governor
5501-467 woodward Inductance inductor
WOODWARD 5466-409 Pressure governor
SR469-P5-LO-A20-E GE Multi-wire SR469 relay
5466-316 WOODWARD I/O of the proportional actuator
5464-414 WOODWARD Digital speed sensor
5466-258 woodward Speed control
140XBP01600 Network communication card
140XBP01000 racks backplanes
140XBE10000 Schneider I/O unit module
140SDI95300S SCHNEIDER safety dc discrete input module
140SDO95300S Secure DC discrete output module
140SAI94000S SCHNEIDER Analog safety input module
140NWM10000 Ethernet TCP/IP module
140NRP95400 SCHNEIDER analog input module
140NRP95400 SCHNEIDER flow controller source
140NRP31200C SCHNEIDER DCS control system
140NOM21100 2-channel pulse input module
140MSB10100 Input/Output module
140NOE77101 Schneider Digital input card
Reviews
There are no reviews yet.