Description
hardware flow control. It is an ideal choice in the field of industrial automation.
3.2 Machine learning
As the functionality of distributed computing tools such as Spark MLLib (http://spark.apache.org/mllib) and SparkR (http://spark.apache
.org/docs/latest/index.html) increases, it becomes It is easier to implement distributed and online machine learning models, such as support
vector machines, gradient boosting trees and decision trees for large amounts of data. Test the impact of different machine parameters and process
measurements on overall product quality, from correlation analysis to analysis of variance and chi-square hypothesis testing to help determine the impact of individual
measurements on product quality. This design trains some classification and regression
models that can distinguish parts that pass quality control from parts that do not. The trained models can be used to infer decision rules. According to the highest purity rule,
purity is defined as Nb/N, where N is the number of products that satisfy the rule and Nb is the total number of defective or bad parts that satisfy the rule.
Although these models can identify linear and nonlinear relationships between variables, they do not represent causal relationships. Causality is critical to
determining the true root cause, using Bayesian causal models to infer causality across all data.
3.3 Visualization
A visualization platform for collecting big data is crucial. The main challenge faced by engineers is not having a clear and comprehensive overview of the complete manufacturing
process. Such an overview will help them make decisions and assess their status before any adverse events occur. Descriptive analytics uses tools such as
Tableau (www.tableau.com) and Microsoft BI (https://powerbi.microsoft.com/en-us) to help achieve this. Descriptive analysis includes many views such as
histograms, bivariate plots, and correlation plots. In addition to visual statistical descriptions,
a clear visual interface should be provided for all predictive models. All measurements affecting specific quality parameters can be visualized and the data
on the backend can be filtered by time.
Excitation system ABB module DSQC320
Excitation system ABB module DSQC318
Excitation system ABB module DSQC317
Excitation system ABB module DSQC316
Excitation system ABB module DSQC315
Excitation system ABB module DSQC314B
Excitation system ABB module DSQC313 3HAB8413-1
Excitation system ABB module DSQC313
Excitation system ABB module DSQC312
Excitation system ABB module DSQC306
Excitation system ABB module DSQC301
Excitation system ABB module DSQC300
Excitation system ABB module DSQC266H
Excitation system ABB module DSQC266B
Excitation system ABB module DSQC266A
Excitation system ABB module DSQC260
Excitation system ABB module DSQC259
Excitation system ABB module DSQC258
Excitation system ABB module DSQC256A
Excitation system ABB module DSQC256
Excitation system ABB module DSQC255
Excitation system ABB module DSQC254
Excitation system ABB module DSQC252
Excitation system ABB module DSQC249B
Excitation system ABB module DSQC2498
Excitation system ABB module DSQC248
Excitation system ABB module DSQC243
Excitation system ABB module DSQC239 YB560103-CH
Excitation system ABB module DSQC239
Excitation system ABB module DSQC238
Excitation system ABB module DSQC236U
Excitation system ABB module DSQC236P
Excitation system ABB module DSQC236H
Excitation system ABB module DSQC236G
Excitation system ABB module DSQC236D
Excitation system ABB module DSQC236C
Excitation system ABB module DSQC236B
Excitation system ABB module DSQC236A
Excitation system ABB module DSQC2360
Excitation system ABB module DSQC235B
Excitation system ABB module DSQC235A
Excitation system ABB module DSQC233
Excitation system ABB module DSQC230
Excitation system ABB module DSQC228
Excitation system ABB module DSQC224
Excitation system ABB module DSQC223YB 560103-BD/4
Excitation system ABB module DSQC223
Excitation system ABB module DSQC215
Excitation system ABB module DSQC211
Excitation system ABB module DSQC210
Excitation system ABB module DSQC209-9H
Excitation system ABB module DSQC209
Excitation system ABB module DSQC208A
Excitation system ABB module DSQC208
Excitation system ABB module DSQC206
Excitation system ABB module DSQC205
Excitation system ABB module DSQC205
Excitation system ABB module DSQC202
Excitation system ABB module DSQC202
Excitation system ABB module DSQC202
Excitation system ABB module DSQC201
Excitation system ABB module DSQC201
Excitation system ABB module DSQC140
Excitation system ABB module DSQC140
Excitation system ABB module DSQC129
Excitation system ABB module DSQC129
Excitation system ABB module DSQC125
Excitation system ABB module DSQC125
Excitation system ABB module DSQC124
Excitation system ABB module DSQC124
Excitation system ABB module DSQC123B
Excitation system ABB module DSQC110
Excitation system ABB module DSQC104
Excitation system ABB module DSQC1030
Excitation system ABB module DSQC103
Excitation system ABB module DSQC1018 3HAC050363
Excitation system ABB module DSQC1018
Excitation system ABB module DSQC1018
Reviews
There are no reviews yet.