Description
hardware flow control. It is an ideal choice in the field of industrial automation.
Why is the industrial Internet inseparable from industrial control?
ABB Global CEO Ulrich Spiesshofer recently accepted an exclusive interview with a reporter from Caijing in New York. He believes that the global manufacturing industry is
undergoing drastic changes. The era of labor arbitrage is over. Labor costs are no longer the focus of competition. The future of manufacturing lies in In factories that are smaller,
closer to consumers, and more agile. Artificial intelligence ( AI ) is the most important technology shaping the future of manufacturing. Currently, AI technology is mainly used in the
consumer field, but its large-scale application in the industrial field and among enterprises is more critical.
Digital transformation has been a keyword for global manufacturing giants in the past two years, and the industrial Internet is the implementation form of digital transformation.
General Electric (GE), Siemens and ABB are all leaders in this regard . Spiesshofer believes that GE”s industrial Internet only collects data and analyzes but cannot control it.
As the world”s two largest industrial automation suppliers, ABB and Siemens have the ability to control equipment, which is a significant difference from GE.
ABB is headquartered in Zurich, Switzerland. Its history can be traced back to the 1880s. It started from the original electrical manufacturing business and has developed into an international manufacturing
giant including electrical products, robotics and motion control, industrial automation and power grid. In 2017, ABB”s revenue was US$34.3 billion, ranking 341st among the
Fortune 500 companies. Spiesshofer has served as CEO for nearly five years since taking office in September 2013.
Below are the details of the interview.
The era of labor arbitrage is over
Caijing: Is 2018 a good year for the manufacturing industry?
Spiesshofer: From a global perspective, GDP is growing and consumption is also growing. Overall positive.
Caijing: What crucial changes are taking place in the manufacturing industry?
Spiesshofer: The jobs of the future will be different from the jobs of the past. In the Middle Ages, craftsmen moved between villages, taking their tools with them to work where
there was demand; later we invented factories, integrated supply and demand, and invented logistics; later people realized that there was labor arbitrage (Labor Arbitrage, Refers to
the existence of moving industries that have lost technological advantages and technical barriers to areas with low labor prices to increase profits by reducing labor costs), so we place
factories in emerging countries to benefit from labor arbitrage.
Now, with the development of modern automation and robotics, we can break this picture and bring value addition closer to demand. I think the future of manufacturing is
in factories that are smaller, closer to consumers, and more agile. I believe that the global logistics chain will also be reduced in the future because we will produce products closer to consumers.
The era of labor arbitrage shaping the global manufacturing landscape will be over because we can offset this arbitrage.
Recently we opened a new factory in Germany. Due to the adoption of intelligent automation technology, its unit cost is exactly the same as that of the best factories in
China. So I think the local market will be repositioned in the future, and the positioning of competitiveness will also change from just considering costs to focusing more on technology and value.
Caijing: Many people are complaining that automation has caused people to lose their jobs, and artificial intelligence technology has made the complaints louder
. But these new technologies are also creating new jobs. How do you see the relationship between the two?
Spiesshofer: In 1990, one-third of the world”s population lived below the extreme poverty line. Today, only 8% rely on technology. In fact, countries with the
highest robot densities, such as Germany, South Korea, Singapore, and Japan, also have the lowest unemployment rates. Robots combined with educated people can create prosperity, produce more
affordable goods, and lead to economic growth. Government, education and business need to work together to keep up with the changing world.
Clearly, millions of jobs are disappearing, but millions of new ones are being created. Taking our own business as an example, we used to have many
employees doing metal casting and forging work, but now these tasks are automated. But now we have more employees working in the service industry, developing apps, and working with customers.
So I think we should not be afraid of change, but should lead our employees to manage change and promote change. If we succeed, global employment will eventually grow.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
A-B 1747-L541 Controller module
Allen-Bradley 22B-D010N104 PowerFlex 4 Variable frequency drive
REXROTH BTV04.2GN-FW Microcontrol panel
GE DS3800DFXA1B1C DIGITAL SPEEDTRONIC IN/OUT GE BOARD
GE HE693ADC409A-22 Millivolt Analog I/O Module
IEMMU21 ABB Module Mounting Unit
HONEYWELL FC-SDOL-0424 Digital output module
871TM-BH8N18-N3 Inductive Sensor
GJR5252300R3101 07AC91F Analog I/O Unit
BENTLY 330101-23-39-10-12-CN sensor
PR6424/010-010+CON021 Shaft vibration sensor probe
Woodward 9907-018 2301A Forward Acting Speed Control
SYN5202-0271 ABB Synchronous device
ACU-01B 3HNA024871-001 Paint Robots
Agilent E1422A Remote Channel Multi-function DAC Module
Agilent E1460A 64-Channel Relay Multiplexer
Agilent E1451A Terminating 20 MHz Pattern I/O Module
Agilent E1441A Arbitrary Waveform Generator
Agilent E1490C VXI Breadboard Module
Agilent E1490B VXI Breadboard Module
Agilent E8305A 250 MHz Pulse Pattern Generator
Agilent E1438D 100 MSa/s Digitizer with DSP and Memory
Agilent E1420B High-Performance Universal Counter
Agilent E1406A VXI GPIB Command Module
Agilent E6234A VXI Pentium PC Controller
Agilent E1426A Digitizing Oscilloscope 500 MHz
Agilent 0950-2283 E1401B High-Power VXI Mainframe Power Supply
Applied Materials 0090-09061-A Thermal Electric Driver Module
Applied Materials 0110-09023-D Mini DI/DO Module
Applied Materials 0110-09022-B Mini AI/AO Module
Applied Materials 0100-09006-M1 Intelligence Interface Module
Applied Materials 0100-11002 Digital I/O VME Module
Applied Materials AMAT 0100-20173 Stepper Controller VME Module
Applied Materials 1043-0024-003 Digital Interface VME Module
Applied Materials 0100-01321 Digital I/O VME Module
Applied Materials 0100-20001 System Electronics Interface VME Module
Bently Nevada 200200-11-11-05 proTIM-R Module
Bently Nevada 1701/10 FieldMonitor 24-Volt dc Power Supply
Bently Nevada PWA88199-01 Rear Control Panel
Bently Nevada 78432-02 Power Input Module
Bently Nevada 78462-01 3300 Relay Module -Conformal Coated
Bently Nevada 3300/80-01-01-01 Six channel stick drop monitor
Bently Nevada 81192-03 Thermocouple Input Module
ASFC-01C 64649540 Switch fuse controller
Bently Nevada 81546-01 Dual Hermetic Relays Module
Bently Nevada 84142-01 XDUCR I/O and Record Terminals Module
Bently Nevada 86416-01 Multi-Channel Diagnositc Instrument
Bently Nevada 82925-01 XDCR I/O and Record Terminals Module
SYN 5202a-Z V221 3BHB006715R0221 SYNCHROTACT®5 is a fifth generation synchrotact device
Bently Nevada 84157-01 LVDT (POT) and Record Terminals Module
Bently Nevada 88501-01 3300 External KO Inputs and Buffered Outputs Module
Bently Nevada 76683-02 35mm 3300 Series Proximitor
Bently Nevada PWA88219-01U 3300 Power Supply
Bently Nevada 78462-02N 3300 Relay Module
Reviews
There are no reviews yet.