Description
DI830 3BSE013210R1 Контроллер ABB
Швейцария, и входит в десятку крупнейших швейцарских транснациональных корпораций.DI830 3BSE013210R1
химическая, нефтехимическая, фармацевтическая, целлюлозно – бумажная, нефтепереработка; Оборудование приборов: электронные приборы, телевизоры и оборудование для передачи данных,
генераторы, гидротехнические сооружения; Каналы связи: интегрированные системы, системы сбора и распространения;DI830 3BSE013210R1Строительная промышленность: коммерческое и промышленное строительство.
(5) Perform predictive maintenance, analyze machine operating conditions, determine the main
causes of failures, and predict component failures to avoid unplanned downtime.
Traditional quality improvement programs include Six Sigma, Deming Cycle, Total Quality Management (TQM), and Dorian Scheinin’s
Statistical Engineering (SE) [6]. Methods developed in the 1980s and 1990s are typically applied to small amounts
of data and find univariate relationships between participating factors. The use of the MapReduce paradigm to simplify data processing in
large data sets and its further development have led to the mainstream proliferation of big data analytics [7]. Along with the development of
machine learning technology, the development of big data analytics has provided a series of new tools that can be applied to manufacturing
analysis. These capabilities include the ability to analyze gigabytes of data in batch and streaming modes, the ability to find complex multivariate
nonlinear relationships among many variables, and machine learning algorithms that separate causation from correlation.
Millions of parts are produced on production lines, and data on thousands of process and quality measurements are collected for them, which is
important for improving quality and reducing costs. Design of experiments (DoE), which repeatedly explores thousands of causes through
controlled experiments, is often too time-consuming and costly. Manufacturing experts rely on their domain knowledge to detect key
factors that may affect quality and then run
DoEs based on these factors. Advances in big data analytics and machine learning enable the detection of critical factors that effectively
impact quality and yield. This, combined with domain knowledge, enables rapid detection of root causes of failures. However,
there are some unique data science challenges in manufacturing.
(1) Unequal costs of false alarms and false negatives. When calculating accuracy, it must be recognized that false alarms
and false negatives may have unequal costs. Suppose a false negative is a bad part/instance that was wrongly predicted to
be good. Additionally, assume that a false alarm is a good part that was incorrectly predicted as bad. Assuming further that
the parts produced are safety critical, incorrectly predicting that bad parts are good (false negatives) can put human lives
at risk. Therefore, false negatives can be much more costly than false alarms. This trade-off needs to be considered when
translating business goals into technical goals and candidate evaluation methods.
ABB UFC760BE143 3BHE004573R0143
ABB 3BHE004573R1042
ABB UFC760BE42
ABB UFC760BE42 3BHE004573R1042
ABB 3BHE006412R0101
ABB UFC762AE101
ABB UFC762AE101 3BHE006412R0101
ABB UFC911B101
ABB 3BHE037864R0101
ABB 3BHE037864R0101 UFC911B101
ABB 3BHE037865P201
ABB 3BHE037864R0106
ABB UFC911B106
ABB 3BHE037864R0106 3BHE037865P201
ABB UFC911B106 3BHE037865P201
ABB UFC911B106 3BHE037864R0106
UFC911B106 3BHE037864R0106 3BHE037865P201
ABB 3BHE037864R0104
ABB UFC911B104
ABB UFC911B104 3BHE037864R0104
ABB 3BHE037864R0108
ABB UFC911B108
ABB UFC911B108 3BHE037864R0108
ABB 3BHE037864R0110
ABB UFC911B110
ABB UFC911B110 3BHE037864R0110
ABB 3BHE024855R0101
ABB UFC921A101
ABB UFC921A101 3BHE024855R0101
ABB HIEE300308R1
ABB PMA323BE
ABB PMA323BE HIEE300308R1
ABB HIEE300885R0001
ABB PPC380AE01
ABB PPC380AE01 HIEE300885R0001
ABB HIEE300885R0102
ABB PPC380AE02
ABB PPC380AE02 HIEE300885R0102
ABB HIEE300885R0102
ABB PPC380AE102
ABB PPC380AE102 HIEE300885R0102
ABB 3BHE010751R0101
ABB PPC902AE101
ABB PPC902AE101 3BHE010751R0101
ABB 3BHE028959R0101
ABB PPC902CE101
ABB PPC902CE101 3BHE028959R0101
ABB 3BHE014070R0101
ABB PPC905AE101
ABB PPC905AE101 3BHE014070R0101
ABB 3BHE024577R0101
ABB PPC907BE
ABB PPC907BE 3BHE024577R0101
ABB 3BHE024577R0101
Reviews
There are no reviews yet.