Description
hardware flow control. It is an ideal choice in the field of industrial automation.
2. Principle of frequency converter
In embedded development, the control of motors is often involved. Currently, frequency conversion control of AC motors is widely used, so let”s briefly introduce the
frequency converter by looking at the diagram, assuming that you already understand the principle of the motor.
The block diagram is as follows:
The frequency converter is mainly composed of rectifier (AC to DC), filtering, inverter (DC to AC), braking unit, drive unit, detection unit, microprocessing unit, etc.
The inverter relies on the switching of the internal IGBT to adjust the voltage and frequency of the output power supply, and provides the required power supply voltage
according to the actual needs of the motor, thereby achieving the purpose of energy saving and speed regulation. In addition, the inverter also has many protection functions.
, such as overcurrent, overvoltage, overload protection, etc. With the continuous improvement of industrial automation, frequency converters have also been widely used.
A typical inverter system diagram is shown below. It mainly includes operation panel, VFD controller, motor and other parts.
1. Typical structure:
Mainly includes: control platform, measurement circuit, power circuit, protection circuit, etc.
There are two common types of frequency converters: voltage type and current type. Among them, the power inverter part mostly uses power
tubes such as IGBT and IGCT.
2. Typical algorithm:
Among them, the control algorithm represented by Siemens is mainly based on coordinate transformation (vector control). Friends who are
interested in the algorithm represented by ABB can search for information by themselves (direct torque control) and will not go into details here.
3. Vector control:
Many chip MCU and MPU manufacturers have provided block diagrams and algorithm libraries for variable frequency vector control. Those
who are interested can study it. For example, the following figure is a block diagram provided by Microchip
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
2711-T10C20L1 PanelView Standard Operator terminal
1769-L16ER-BB1B CompactLogix 5370 Ethernet Controller
DKC11.3-100-7-FW Servo controller
DSTC190 57520001-ER connection unit
DSTC120 57520001-A Connection unit
DSAI110 57120001-DP analog input board
DSSB146 48980001-AP Battery module
DSSR116 48990001-FK boost voltage regulator
NTCF22 Terminal unit ABB
VE4022 KJ3243X1-BB1 Profibus module
IC695CHS007LT Slot 7 Universal backplane
IC695CPE305LT RX3i CPU
IC695PSD140LT Power module
5466-409 CPU module
8200-314 Digital Controller
ALR121-S00S1 Serial communication module
IC697PWR724F Power module
SR735-5-5-HI-485 feeder protection relay
3500/22-02-01-00 Transient data interface
3500/40-01-00 3500/40M front monitor
3500/92-0201-00 Communication gateway
TC-PCIC01 Controls the interface module
DS200GDPAG1AKF High frequency power supply board
DS200LDCCH1ANA Driver control/LAN communication board
DS200TCCBG88ED digital input/output board
TC-PRS021 Controls the processor module
TC-0DK161 Digital output PLC card
TC-FXX132 Experion 13 slot chassis
MC-TAOY22 80366177-175 Analog output board
MMS6823R Communication interface module
FBMSSW I/A series control card
XVME-660-716 The VMEbus PC is compatible with the processor module
XVME-675/19 PC/AT processor module
XVME-956/900 I/O Expansion bracket
MVI56E-GSC universal ASCII serial enhanced communication module
CE4003S2B6 Standard I/O terminal board
XVME-956/412 I/O Expansion bracket
CE4005S2B4 Standard I/O terminal board
3500/53-01 Overspeed detection module
80190-580-01-R drives the processor module
2711-B6C10 Operator terminal
3500/62-04-00 Process variable monitor
VMIVME-7645 vmebus board computer
MVME162-233 Dual-height VME module
DSAX110A 57120001-PC analog input/output board
9907-175 Load sharing module
Reviews
There are no reviews yet.