Description
Coke oven is a key in the coking industry. The temperature in the oven directly affects the quality of the refining coke. Therefore, we must ensure that the temperature in the oven is
stable within a reliable range. Therefore, we must control the pressure in the coke oven flue and gas main pipe.
We adopt a composite control method, that is, feedforward plus feedback/manual switching to achieve control requirements.
The liquid level in the elution benzene condensate storage tank, the temperature at the top of the ammonium distillation tower and the
pH value of the ammonium water are automatically adjusted. Since the SP value (set value) of many adjustment loops is an uncertain number
, need to be based on different requirements in different periods; in the design of PID adjustment and manual/automatic switching, we designed the SP to track the PV when manual,
and adjust the process value according to the SP value during automatic switching, so that when the operator switches from manual Switch the adjustment process value to automatic and you
can adjust it immediately with this process value. It is conducive to operators to further explore ways to improve work efficiency.
On the operation interface of the operator station, trend charts of important variables such as “ammonium distillation tower bottom pressure” and “regeneration tower liquid level” are created, which
is helpful for operators to intuitively observe the changing trends of important data. We use the signal sequence function to record the changing process of each operation. Its fastest scanning period is
two milliseconds, so that we can clearly remember the changing sequence of data. When an accident occurs, we can refer to these data to analyze the cause of the accident. . We have also created a
database to cumulatively record important variables in the process of “coal preparation”, “coke screening”, “tank area”, etc. Enterprises
can analyze the production process based on the data, optimize the production process, and continuously improve efficiency.
The OPC standard software interface is designed in the system, which provides the basis for the enterprise”s on-site data management.
At the same time, it provides guarantee for enterprises to realize information management.
7. Summary
Now the plant has been put into production. According to the design requirements, the entire system is designed to produce 1 million tons of coke per year. The DCS control system provides guarantee
for achieving this goal. The ABB AC800F distributed control system operates stably and reliably, and at the same time brings convenience to the enterprise”s information management. Practice has proven
that the DCS control system has made contributions to improving labor productivity, improving product quality, and avoiding accidents. It has brought considerable economic benefits to the enterprise and achieved user satisfaction.
Excitation system ABB module 07ZE62R101
Excitation system ABB module 07ZE61R101
Excitation system ABB module 07ZE60R201
Excitation system ABB module 07ZB69R2
Excitation system ABB module 07ZB69R1
Excitation system ABB module 07ZB60
Excitation system ABB module 07YS86
Excitation system ABB module 07YS81
Excitation system ABB module 07YS80
Excitation system ABB module 07TI80
Excitation system ABB module 07PT40
Excitation system ABB module 07PS63R2
Excitation system ABB module 07PS62R3
Excitation system ABB module 07PS62R1
Excitation system ABB module 07PG201
Excitation system ABB module 07PG200R1
Excitation system ABB module 07NG82
Excitation system ABB module 07NG68R1
Excitation system ABB module 07NG66R1
Excitation system ABB module 07NG63R2
Excitation system ABB module 07NG60R1
Excitation system ABB module 07MK62
Excitation system ABB module 07KT98C GJR5253100R028
Excitation system ABB module 07KT98-ARCNET
Excitation system ABB module 07KT98 H4 GJR5253100R3262
Excitation system ABB module 07KT98 H4 GJR5253100R3262
Excitation system ABB module 07KT98 H4 GJR5253100R3260
Excitation system ABB module 07KT98 GJR5253100R4278
Excitation system ABB module 07KT98 GJR5253100R0278
Excitation system ABB module 07KT98 GJR5253100R0278
Excitation system ABB module 07KT98
Excitation system ABB module 07KT98
Excitation system ABB module 07KT97H3
Excitation system ABB module 07KT97F1
Excitation system ABB module 07KT97B
Excitation system ABB module 07KT97 GJR5253000R4270
Excitation system ABB module 07KT97 GJR5253000R0100
Excitation system ABB module 07KT94 GJR5252100R3261
Excitation system ABB module 07KT94
Excitation system ABB module 07KT93 G/GJR5251300R0101
Excitation system ABB module 07KT92 GJR5250500R0902
Excitation system ABB module 07KT92 CS31
Excitation system ABB module 07KT92
Excitation system ABB module 07KT60
Excitation system ABB module 07KT31
Excitation system ABB module 07KT228
Excitation system ABB module 07KR51 DC24V
Excitation system ABB module 07KR31 FPR36000227R1202-S
Excitation system ABB module 07KR31
Excitation system ABB module 07KR31
Excitation system ABB module 07KR240
Excitation system ABB module 07KR228
Excitation system ABB module 07KR220b
Excitation system ABB module 07KP62
Excitation system ABB module 07ET83A
Excitation system ABB module 07ET40R1
Excitation system ABB module 07EI60
Excitation system ABB module 07EB90-S
Reviews
There are no reviews yet.