Description
INIET800 Электрический фильтр ABB
Швейцария, и входит в десятку крупнейших швейцарских транснациональных корпораций.INIET800
химическая, нефтехимическая, фармацевтическая, целлюлозно – бумажная, нефтепереработка; Оборудование приборов: электронные приборы, телевизоры и оборудование для передачи данных,
генераторы, гидротехнические сооружения; Каналы связи: интегрированные системы, системы сбора и распространения;INIET800Строительная промышленность: коммерческое и промышленное строительство.
Design of ABB industrial robot deburring and grinding workstation based on RobotStudio simulation software
introduction
As an official offline programming software for ABB robots, Robotstudio not only has powerful simulation and offline programming functions, but also has automatic path generation
function and simulation monitoring collision function. It can realize the simulation of robots in real scenes, so as to timely update existing robot programs. optimize. On-site teaching
programming will affect normal production activities on site.
The application of Robotstudio software offline programming can reduce on-site teaching and programming time.
As a traditional process of mechanical processing, deburring and grinding have a wide range of applications. However, for a long time, in the process of manual deburring
and polishing, there have been differences in operations between workers. The manual operation is not repeatable and the deburring effect is unstable, which has seriously
affected the surface quality and service life of the finished product; and the working environment There is a large amount of dust floating in the air and the conditions are harsh,
seriously endangering the physical and mental health of workers. With the proposal of “Made in China 2025”, intelligent manufacturing production has become an
important development direction for the transformation and upgrading of the future manufacturing industry. The use of industrial robot automated production lines for repetitive
batch processing operations can not only greatly improve production efficiency, but also greatly improve product quality. Yield and production stability. Therefore, before designing
the robot polishing program, if the shape, size and polishing amount of the workpiece to be polished are known, the robot offline program can be written on the
Robotstudio software according to the existing conditions, thereby improving the efficiency of on-site programming.
1Design task description
This task is to create a new simulation workstation in ABB robot simulation software Robotstudio. The corresponding training equipment in reality is the Yalong
YL-l360A industrial robot deburring and grinding system control and application equipment. The industrial robot selection and method of the simulation workstation are
The grinding head installed on the blue plate refers to the Yalong YL-l360A industrial robot deburring and grinding system control and application equipment, and the
workpiece is customized. The ABB industrial robot deburring and
grinding workstation simulation training process includes: creating a workstation, setting up tools, creating smart components, creating tool coordinate systems,
creating trajectories, programming, simulation design, and verification.
2 Task implementation
2.1 Create a workstation
Import the robot: First, create a new simulation workstation in the Robotstudio software. The workstation name is self-named, and then import the
corresponding industrial robot IRB1410. The robot position remains unchanged by default. Create a robot system, modify the system options, check 709-1D
eviceNetMaster/s1ave, select Chinese as the language, and leave the other options unchanged by default, then click Confirm to create the robot system
After the robot system is created, hide the industrial robot IRB1410 to facilitate subsequent workstation operations.
Import workpiece: The workpiece here is customized, and the corresponding workpiece is selected according to the actual situation on site. This article
uses the original workpiece Curvet in Robotstudio software. After importing it into the workstation, according to the reachable range of the robot, just place the
workpiece at a suitable location within the reachable range of the robot, as shown in Figure 1.
Import the grinding rotor tool: First, create a new grinding rotor tool component – rotor – copy (2) and rotor – copy (2) in the so1idworks 3D software. The
rotor – copy (2) is a rotatable grinding rotor. —The copy is the tool body, which is the grinding rotor frame, and is installed on the robot flange, as shown in Figure 2.
2.2 Setting tools
First, move the rotatable grinding rotor and the tool body to the local origin based on point A, and adjust the initial tool angle so that the grinding rotor is
parallel to the x-axis of the geodetic coordinate system, as shown in Figure 3. Set the local origin of the tool body at this time, change the position x, y,: to 0, 0, 0, and change the direction x, y,: to 0, 0, 0.
Figure 3 Tool settings
Create a new frame at point B of the tool body, name it “frame l”, and adjust the direction of frame l so that the axis is perpendicular to the
plane of point B. The specific direction is shown in Figure 4.
PR6424/010-130+CON011 probe and preprocessor
1786-RPFM control network modularization
TSXDSZ08R5 TSX Miniature 8 output relay
TSX3721001 PLC configuration
TSXDEZ12D2 12 Discrete input
TSXDMZ28DR 28 Input/output
1756-TBNH Terminal board or RTB module
Sensor PR6423/01R-010-CN+CON021
1756-PA75R/A Redundant power module
Sensor PR6423/01R-010-CN+CON021
PS8310 TRICONEX Power module Provides 120 volts AC
3721N TRICONEX 3721N Analog input module
VM600 RLC16 relay card
VM600 CPUM Modular CPU card
VM600 MPC4SIL Mechanical protection card
VM600 XIO16T Input/output module
VM600 MPC4 mechanical protection card
VM600 IRC4 intelligent relay card
VM600 IOCR2 input/output card
VM600 IOCN input/output card
VM600 IOC8T input/output card
VM600 IOC4T input/output card
VM600 AMC8 Analog monitoring card
VM600 CPUR rack controller and communication interface card
VM600 XMV16 Vibration status monitoring module
VM600 XMC16 Combustion status monitoring module
VM600 ABE056 Ultra-thin rack
VM600 ASPS auxiliary sensor power supply
PLX82- IP-PNC controller gateway
DRP-240-24 MEAN WELL rail type power supply
6181P-17TPXPH performance computer
C7024E1001 Flame detector
IC3600STKK1 temperature control panel
IC3600STKJ1C thermocouple amplifier card
VE4003S2B3 S series traditional input/output
1756-EN3TR Communication bridge module
DS200TBCAG1AAB analog input/output terminal board
AIM0006 2RCA021397A0001K Main Control Board
20AC030A0AYNANC0 PowerFlex 70 drive
20AC072A0AYNANC0 AC drive
22A-D2P3N104 PowerFlex 4 Adjustable frequency AC drive
2711-K5A5L11 PanelView 550 Terminal
TBU810 Terminal basic unit ABB
CPM810 Universal processor module ABB
IC694TBB032 Terminal board components
7CP476-020.9 CPU B&R
CDD32.003.C2.1 LUST servo drive
PCIE-6363 Multifunctional I/ O device
Reviews
There are no reviews yet.