Description
S800 I/O can communicate with higher-level control systems through Profibus DP or ABB AF100 fieldbus. At the same time, it can be connected to ABB transmission equipment,
and the module status can be displayed such as status display. It can also be remotely diagnosed through fieldbus. The data scans the I/O module through the
field bus at a certain period, and the scanning period is set to 4-108ms according to the module type. S800 I/O has full redundancy functions, including bus interface module
redundancy, bus media redundancy and I/O module
redundancy. Bumpless switching is achieved and all outputs can be forced or preset. The I/O modules are locked through mechanical locking keys and terminal blocks, and
all modules can be plugged and unplugged while powered. Provides intrinsically safe modules and HART communication, converts the HART protocol to Profibus-DP V1, and can use DTM for configuration.
Each module and channel status display are easy to diagnose. All modules are injection molded and the protection level is IP20.
The S800 I/O station is rail mounted and can be installed horizontally or vertically. Compact and expandable terminal blocks can be mixed together
. Choosing extension cables can make the installation more flexible to suit different installation space requirements.
5. System composition plan
The system is equipped with four process stations and eight operator stations: the engineering station uses industrial PCs (portable computers can also be used) as debugging
equipment. According to the coal chemical process and site layout, we have established a total of 4 process stations; the system The operator station runs on an industrial PC and has an
operating interface developed based on the full Chinese Digivis software package of the MS Windows NT platform. Its graphical operating interface enhances the use and operation functions
of the system. In addition, it can also improve the external device indicators of the PC, such as monitors , printers, mice and keyboards, etc., making system operation more convenient. According to the
manufacturer”s requirements, one or two operator stations are established corresponding to the four process stations. Each operator station can only monitor
and operate the information of the corresponding process station. The specific structure is shown in Figure 1.
The entire system is designed to be safe and reliable. Industrial Ethernet adopts a redundant network topology with high reliability and security. When one or all of the operator stations and engineer
stations are shut down, the system will not shut down as long as the process station does not stop; while the process station adopts dual-machine hot backup In redundant mode, a battery can be placed in the
controller EI module . This battery can maintain normal operation for 20 milliseconds in the event of a power outage. When
an error occurs in one controller, the system will automatically switch to another controller to achieve Smooth switching and synchronization between the master and slave AC800F controllers make t
he entire system highly secure. Not only the controller can be redundant, but all inputs and outputs support redundant configuration, which can further improve the reliability of the system. But using input and
output redundancy will increase the cost, so we only use controller redundancy.
The AC800F controller system communication template is a standard TCP/IP protocol Ethernet module, so that the system can be connected to the enterprise LAN without adding additional equipment.
Since the system supports standard DDE and OPC data exchange standards, the system can communicate with various third-party databases or Software data exchange will be easier, bringing convenience
to on-site real-time data management and enterprise information management systems.
6. Process realization
According to the process, it will be divided into: “coke screening system”, “coal preparation”, “desulfurization and sulfur recovery”, “ammonium sulfate”, “benzene elution”, “comprehensive water supply”, ”
biochemical treatment”, “coking” , “refrigeration station”, “air compressor station”, “tank area” and other post stations. During system design flow chart screens are designed using job stations. We have
created a lot of macro libraries in the picture, which not only facilitates us to draw the operator picture, but also ensures the unity and beauty of the picture. A number of dynamically displayed bar graphs
were made on the operation interface of the operator station, which not only vividly describes the changes in variables, but also avoids the operator”s visual fatigue. There are also many graphic symbols
in the screen. These graphical symbols can not only represent the status of the current variable, but the operator can also use these symbols to call the operation panel of the corresponding variable,
use software logic control, control the pump switch, manual automatic switching, and the predefined value or operating value of the variable .
Excitation system ABB module DSQC540
Excitation system ABB module DSQC539 3HAC14265-1
Excitation system ABB module DSQC539
Excitation system ABB module DSQC532B
Excitation system ABB module DSQC518A
Excitation system ABB module DSQC513
Excitation system ABB module DSQC510
Excitation system ABB module DSQC509
Excitation system ABB module DSQC509
Excitation system ABB module DSQC508
Excitation system ABB module DSQC505
Excitation system ABB module DSQC504
Excitation system ABB module DSQC504
Excitation system ABB module DSQC503A
Excitation system ABB module DSQC501
Excitation system ABB module DSQC500 3HAC3616-1/03
Excitation system ABB module DSQC462
Excitation system ABB module DSQC417
Excitation system ABB module DSQC400E
Excitation system ABB module DSQC386
Excitation system ABB module DSQC377B
Excitation system ABB module DSQC377A
Excitation system ABB module DSQC373
Excitation system ABB module DSQC370
Excitation system ABB module DSQC369
Excitation system ABB module DSQC368
Excitation system ABB module DSQC365
Excitation system ABB module DSQC363
Excitation system ABB module DSQC361 3HAC0373-1
Excitation system ABB module DSQC361
Excitation system ABB module DSQC355A
Excitation system ABB module DSQC354
Excitation system ABB module DSQC354
Excitation system ABB module DSQC352B 3HNE00009-1/17
Excitation system ABB module DSQC352B 3HNA016493-00
Excitation system ABB module DSQC352A 3HNE00009-1/11
Excitation system ABB module DSQC352A 3HNE00009-1
Excitation system ABB module DSQC352A
Excitation system ABB module DSQC352 3HNE00009-1/07
Excitation system ABB module DSQC352 3HNE00009-1
Excitation system ABB module DSQC352
Excitation system ABB module DSQC352
Excitation system ABB module DSQC350
Excitation system ABB module DSQC350
Excitation system ABB module DSQC346U 3HAB8101-13/07A
Excitation system ABB module DSQC346U
Excitation system ABB module DSQC346G
Excitation system ABB module DSQC346G
Excitation system ABB module DSQC346E
Excitation system ABB module DSQC346B
Excitation system ABB module DSQC345E
Excitation system ABB module DSQC345E
Excitation system ABB module DSQC345B
Excitation system ABB module DSQC345A
Excitation system ABB module DSQC332A 3HAC17973-1
Excitation system ABB module DSQC332A
Excitation system ABB module DSQC332
Excitation system ABB module DSQC330
Excitation system ABB module DSQC327A 3HAC17971-1/03
Excitation system ABB module DSQC327A 3HAC17970-1
Excitation system ABB module DSQC327A
Excitation system ABB module DSQC327 3HAB7230-1
Excitation system ABB module DSQC326
Excitation system ABB module DSQC324 3HAB5957-1
Excitation system ABB module DSQC323
Excitation system ABB module DSQC322
Excitation system ABB module DSQC322
Excitation system ABB module DSQC321
Reviews
There are no reviews yet.