Description
PCD232A 3BHE022293R0101 Контроллер ABB
Швейцария, и входит в десятку крупнейших швейцарских транснациональных корпораций.PCD232A 3BHE022293R0101
химическая, нефтехимическая, фармацевтическая, целлюлозно – бумажная, нефтепереработка; Оборудование приборов: электронные приборы, телевизоры и оборудование для передачи данных,
генераторы, гидротехнические сооружения; Каналы связи: интегрированные системы, системы сбора и распространения;PCD232A 3BHE022293R0101Строительная промышленность: коммерческое и промышленное строительство.
3 Case Studies on Reducing Scrap Rates
Any product assembled or produced in a factory goes through a series of quality tests to determine whether it needs to be scrapped.
High scrap rates are caused by the opportunity cost of not delivering products to customers in a timely manner, wasted personnel time, wasted
non-reusable parts, and equipment overhead expenses. Reducing scrap rates is one of the main issues manufacturers need to address. Ways to
reduce scrap include identifying the root causes of low product quality.
3.1 Data processing
Root cause analysis begins by integrating all available data on the production line. Assembly lines, workstations, and machines make up the industrial
production unit and can be considered equivalent to IoT sensor networks. During the manufacturing process, information about process status,
machine status, tools and components is constantly transferred and stored. The volume, scale, and frequency of factory production considered in
this case study necessitated the use of a big data tool stack similar to the one shown in Figure 2 for streaming, storing, preprocessing, and
connecting data. This data pipeline helps build machine learning models on batch historical data and streaming real-time data. While batch
data analytics helps identify issues in the manufacturing process, streaming data analytics gives factory engineers regular access to the latest
issues and their root causes. Use Kafka (https://kafka.apache.org) and Spark streaming (http://spark.apache.org/streaming) to transmit real-time
data from different data sources; use Hadoo (http://hadoop.apache.org ) and HBase (https://hbase.apache.org) to store data efficiently; use
Spark (http://spark.apache.org) and MapReduce framework to analyze data. The two main reasons to use these tools are their availability as open
source products, and their large and active developer network through which these tools are constantly updated.
IC693CHS398 GE
IC693CMM321 GE
IC693CPU331 GE
IC693CPU341 GE
IC693CPU363 GE
IC693CPU372-AE GE
IC693CPU372 GE
IC693CPU374-BF GE
IC693CPU374 DJ/BF GE
IC693DNM200-BC GE
IC693DNM200-AB GE
IC693DNM200 GE
IC693DNM200-BD GE
IC693DSM302-RE GE
IC693MDL231-E GE
IC693MDL231 GE
IC693MDL340 GE
IC693MDL640 GE
IC693MDL645 GE
IC693MDL646 GE
IC693MDL654 GE
IC693MDL655 GE
IC693MDL753 GE
IC693MDR390 GE
IC693PCM311 GE
IC693PWR321 GE
IC693PWR330G GE
IC695CPU315-BB GE
IC695CPU315-CD GE
GE IC695CPU320-HS
IC695CRU320 GE
IC695CRU320 CD/EH GE
IC695CRU320-BB GE
IC695CRU320-EJ GE
IC695CRU320CA-EL GE
IC695ETM001 GE
ic693mdl740 GE
IC697ACC720 GE
IC697ACC722B 44A730240-G01 GE
IC697ALG440 GE
IC697BEM711 GE
IC697BME731 GE
IC697CHS770 GE
IC697CHS790 GE
IC697CHS790D GE
IC697CMM742 GE
IC697CPM790 GE
IC697CPM790-GD GE
IC697CPM925 GE
IC697CPX772-CB GE
IC697CPX772 GE
IC697CPX928 GE
IC697CPX928-CD GE
IC697CPX928-FE GE
IC697CPX935 GE
IC697HSC700 GE
Reviews
There are no reviews yet.