Description
hardware flow control. It is an ideal choice in the field of industrial automation.
The most fundamental reason for distinguishing these two motor types is that the
design of the air gap magnetic field is different. So the following differences arise
The back EMF waveform is different:
BLDC: Approximate trapezoidal wave (ideal state);
PMSM: sine wave (ideal state);
The three-phase current waveforms are different:
BLDC: Approximate square wave or trapezoidal wave (ideal state);
PMSM: sine wave (ideal state);
Differences in control systems:
BLDC: usually includes position controller, speed controller and current (torque) controller;
PMSM: Different control strategies will have different control systems;
Controls are different:
BLDC: 120-degree square wave current, using PWM control;
PMSM: Positive Xuan wave current, controlled by SPWM SVPWM.
However, in actual control, brushless DC can also be controlled by FOC, and permanent magnet
synchronous motors can also be controlled by square waves.
Just like the controllers of electric vehicles, I have disassembled and studied three or four. The interfaces are
all the same, the control chips are different, and of course the control algorithms are also different. Electric vehicles
controlled by sine waves have very low sound when starting and running, and there is no jitter during operation;
but electric vehicles controlled by square waves have very obvious sounds, and the jitter during operation can also
be felt. The judder is due to definite torque ripples.
Motors controlled by square waves have higher power efficiency, because motors controlled by sine waves have a lower effective voltage.
4. Control technology of permanent magnet synchronous motor
Permanent magnet synchronous motors and brushless DC motors can be operated using the same control method.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
TRICONEX 4107 TRICONEX COMMUNICATION MODULE
PROCESSOR 958481320201 PROC PLUS Communication module
PROCESSOR 958481321210 PD212 Analog output module
PROCESSOR 958481321220 PD208 I/O expansion card
PROCESSOR 958481321300 PSB Compact input module
PROCESSOR 958481321210 PD212 Control board
PROCESSOR 958481320100 350211080090 Processor module
PROCESSOR 958481321200 350211080320 Network communication card
DDC779BE02 3BHE006805R0002 Medium and high voltage module
VACON PC00459G CM210901 PLC module
IC697CPX928-CD GE Programmable logic controller
IC695CPU320-HS GE central processing unit
IC693MDL655 GE 24 volt DC positive/negative logic input module
IC695CPL410 GE Quad-core processor
IC693MDL340 GE AC output module
IC693CHS392 GE 90-30 series platform is compatible with the extension of the substrate
IC660EBD025 GE two 32-circuit DC modules
IC200EBI001 GE Ethernet network interface Unit
FC-QPP-0002 Honeywell quad-core processor
F8651X HIMA Processing board module
EB501 YOKOGAWA Bus repeater module
DS200SLCCG1AEE GE local Area network (LAN) communication card
DS200KLDBG1ABC GE General Electric Display Board
CQM1H-CPU21 Omron General control system
3531E TRICONEX DIGITAL INPUT MODULE
CP430T-ETH ABB control panel
CG6565/64-2L/8T NMS media processing board
BS4141-0/13.5 TURCK Mini fast connector
ATV61HD45N4 Schneider ATV61 speed drive
A860-2005-T505 FANUC High flexible towed chain cable
AS-BDAU-204 Schneider analog input module
A2H254-16 Enterasys Fast Ethernet edge switch
3500/32 125712-01 Bently Nevada 4-channel relay module
330180-X1-CN Bently Nevada Front sensor
330100-90-01 Bently Nevada Preprocessor system
330100-90-00 Bently Nevada 3300 Preprocessor sensor
8220-DI-IS MTL 16 single-ended input channels
4715KL-05W-B50 NMB Axial flow fan
2711P-T6C5A Allen-Bradley Panelview Plus 600 series operator interface terminal
2711-K10G1 Allen-Bradley Panelview 1000 series
Reviews
There are no reviews yet.