Description
Experience of using FBP bus adapter in intelligent motor controller:
(1) Fieldbus can save a lot of costs
From the installation stage, only one communication cable is used to provide power and communication to the entire network. Compared with the point-to-point control method, a large number of cables, bridges, etc. are saved, which not only shortens
the installation time, but also reduces the cost. installation fee.
From a control point of view, the use of network communication and “soft” I/O methods saves I/O modules, especially analog modules. For example, for workstations such as intelligent motor controller UMC22 or frequency converters, start/stop, start mode,
acceleration/deceleration and other commands; parameters such as voltage, current , temperature, running time, etc. can all be realized from bus network communication.
(2) The equipment failure rate is greatly reduced, diagnosis is convenient, and elimination is rapid.
Because the FBP system uses only one communication cable to control the entire equipment network, the equipment failure rate is greatly reduced. The use of data communication to control each station not only greatly reduces the number of cables
in the traditional point-to-point method, but also greatly reduces fault links and further improves system stability.
The centralized control of the motor through the FBP system is very effective, which greatly facilitates the diagnosis of equipment faults. For example, when a certain intelligent motor controller UMC22 fails, not only can the alarm information be seen in the
central control room, but the alarm information can also be obtained from the operation panel of the UMC22, which is convenient and fast.
Engineering practice shows that 80% of bus faults occur in the bus cable itself, and the FBP system provides pre-installed cables with metal contacts to minimize the possibility of faults caused by cable problems.
(3) System monitoring is more convenient and intelligent.
The FBP system makes it more convenient for operators to access the working status of field stations and adjust control parameters at any time. Such as motor current, temperature and other parameters to ensure the normal operation of the motor.
(4) Plug and play (P&P) system expansion.
Because FBP adopts a “hand-in-hand” connection method, users can expand and insert the required monitoring objects in any link as needed.
Application 2 of ABB FBP bus adapter in intelligent motor controller:
Figure 5 Application of FBP and PDQ22 in smart motors
In Figure 5, the FBP system uses the PDQ22 device integrated with the Profibus protocol. Profibus and other fieldbuses use the standard RS 485 method. Each segment is limited to 32 master/slave stations. If more devices need to be connected, additional
devices are required. relay. Using PDQ22, you can connect 4 devices each to the Profibus DP bus, but as a node in the bus, you can save the number of bus nodes. Has the following characteristics:
Up to 4 FBP adapters can be used at one bus node;
Reliable system concept: detect equipment faults and indicate bus and equipment status;
Simple system integration: free access to parameters, operating and diagnostic data of connected devices; integrated maintenance management.
5. ABB FBP bus adapter is used in software configuration of intelligent motor controllers
PS501 programming software is used in this system. It uses ABB Codesys V2.3 programming software as the development environment, complies with the international standard of ICE61131-3, and can support statement list (IL), ladder diagram (LD),
and function block (FBD). , Sequential Function Chart (SFC), Structured Text (ST), and Continuous Function Chart (CFC) six programming languages. The complete setup of the AC500 system can
be completed, including all fieldbuses and interfaces, as well as comprehensive diagnostic functions, alarm handling, integrated visualization functions and open data interfaces.
Figure 6 FBP bus adapter configuration diagram in PS501 software
Figure 7 UMC22 monitoring interface (PS501 visualization function)
Excitation system ABB module 3HNA024871-001
Excitation system ABB module 3HNA024203-001
Excitation system ABB module 3HNA023282-001
Excitation system ABB module 3HNA023200-001
Excitation system ABB module 3HNA018573-001
Excitation system ABB module 3HNA018564-001
Excitation system ABB module 3HNA016493-001
Excitation system ABB module 3HNA015771-001
Excitation system ABB module 3HNA015495-001/01
Excitation system ABB module 3HNA015162-001
Excitation system ABB module 3HNA015149-001
Excitation system ABB module 3HNA015149-001
Excitation system ABB module 3HNA013638-001/03
Excitation system ABB module 3HNA012283-001
Excitation system ABB module 3HNA011999-001
Excitation system ABB module 3HNA011788-001/01
Excitation system ABB module 3HNA011334-001
Excitation system ABB module 3HNA011334-001
Excitation system ABB module 3HNA011333-001
Excitation system ABB module 3HNA010906-001
Excitation system ABB module 3HNA010598-001/03
Excitation system ABB module 3HNA010598-001 DSQC378B
Excitation system ABB module 3HNA009724-001
Excitation system ABB module 3HNA009609-001
Excitation system ABB module 3HNA007885-002
Excitation system ABB module 3HNA007719-001
Excitation system ABB module 3HNA007073-001/03
Excitation system ABB module 3HNA007022-001
Excitation system ABB module 3HNA007022-001
Excitation system ABB module 3HNA007022
Excitation system ABB module 3HNA006570-001
Excitation system ABB module 3HNA006492-001/04
Excitation system ABB module 3HNA006330-001
Excitation system ABB module 3HNA006262-001
Excitation system ABB module 3HNA006149-001
Excitation system ABB module 3HNA006149-001
Excitation system ABB module 3HNA006146-001
Excitation system ABB module 3HNA006145-001
Excitation system ABB module 3HNA006144-001/03
Excitation system ABB module 3HNA006144-001/03
Excitation system ABB module 3HNA006144-001
Excitation system ABB module 3HNA004958-001
Excitation system ABB module 3HNA002064-001
Excitation system ABB module 3HNA001625-001
Excitation system ABB module 3HNA001625-001
Excitation system ABB module 3HNA000512-001
Excitation system ABB module 3HB012961R0001
Excitation system ABB module 3HAC9710-1
Excitation system ABB module 3HAC8627-1
Excitation system ABB module 3HAC8593-1
Excitation system ABB module 3HAC8500-6
Excitation system ABB module 3HAC8409-1
Excitation system ABB module 3HAC8311-2
Excitation system ABB module 3HAC8280-1
Excitation system ABB module 3HAC8278-1/04
Excitation system ABB module 3HAC8185-4
Excitation system ABB module 3HAC8085-2
Excitation system ABB module 3HAC7998-8
Excitation system ABB module 3HAC7998-7
Excitation system ABB module 3HAC7970-1
Excitation system ABB module 3HAC7681-1
Excitation system ABB module 3HAC7681-1
Excitation system ABB module 3HAC7664-1
Excitation system ABB module 3HAC7457-3
Excitation system ABB module 3HAC7344-1
Excitation system ABB module 3HAC7344-1
Excitation system ABB module 3HAC7310-1
Excitation system ABB module 3HAC7149-1
Excitation system ABB module 3HAC6877-1
Excitation system ABB module 3HAC6792-1
Excitation system ABB module 3HAC6762-1
Excitation system ABB module 3HAC6696-1
Excitation system ABB module 3HAC6449-1
Reviews
There are no reviews yet.