Description
hardware flow control. It is an ideal choice in the field of industrial automation.
Figure 4 Tool Framework
2.3Smart component creation
Call the Rotator component: This component is used to allow the rotatable grinding rotor to rotate during simulation to simulate the real grinding scene. In the
parameters of the Rotator component, set the reference to object, the reference object to the frame l, and the object to a copy of the rotor. (2) The rotary grinding rotor
can be rotated, and the speed is l20mm/s (the speed of the grinding head will affect the quality of the finished product) ), the reference center axis is: axis (based on frame
l, centerpoint x, y,: set to 0, 0, 0, Axis set x, y,: 0, 0, l000mm).
Call the Attach component: This component is used to allow the rotatable grinding rotor to be integrated with the tool body. When the tool body is installed
on the flange, it can follow the movement of the flange. In the parameters of the Attach component, set the sub-object to be a copy of the rotor (2) for the rotatable
polishing rotor, and the parent object is the tool body of a copy of the rotor. The offset and orientation are
based on the offset of point B relative to the origin. For setting, you can use the measurement tool in Robotstudio software to measure, and then set the parameters
after measurement.
Verification: Install a copy of the rotor tool body onto the robot flange, and then click Execute in the Attach component. You can observe whether the position of the
rotatable grinding rotor is correct at this time. If there is a deviation, adjust the position in time, as shown in the figure. 5 shown.
Figure 5 Tool installation
2.4 Create tool coordinate system
Use the six-point method to create the tool coordinate system Too1data on the robot teach pendant at the center of the rotor. Change the tool coordinate
system to Too1data in the basic options. At this time, click on the robot manual linear and you can drag the robot to move linearly at will.
2.5 Creating trajectories and programming
Determine the trajectory: According to the requirements of the work task, design the grinding trajectory around the workpiece and determine the trajectory
points and transition points required for the grinding trajectory. The grinding action process is shown in Figure 6.
Setting I/O and programming: Yalong IY-l3-LA industrial robot deburring and grinding system control and application equipment adopts 0sDC-52 6/o
communication board, the address is 10, Do1 is the digital output signal, the address is 1 . First set the I/O board, then set the I/O digital output signal Di1,
and then program on the simulation teaching pendant. The procedure is as follows:
PRoCmain()
setDo1: Set the Do1 signal to allow the external grinding rotor to start rotating.
waitTime1: The robot stays in place and does not move, waits for 1s, and lets the polishing rotor turn to the specified speed, transition
MoveAbsjjpos10NoEoffs,v1000,z50,Too1data1: The robot moves to the initial point jpos10 above point p10. Point jpos10 is used as the starting
point and end point of the robot”s action.
Move4p10,v1000,z50,Too1data1: Move straight line grinding to point p10
Move4pL0,v1000,z50,Too1data1: Move straight line grinding to pL0 point
Move4p30,v1000,z50,Too1data1: Move straight line grinding to point p30
Move4p40,v1000,z50,Too1data1: Move straight line grinding to p40 point
Move4p10,v1000,z50,Too1data1: Move straight line grinding to point p10
MoveAbsjjpos10NoEoffs,v1000,z50,Too1data1: The robot moves to the initial point jpos10 above point p10
waitTime1: wait 1s, transition
ResetDo1: Reset the Do1 signal to stop the rotor ENDPRoC
2.6 Simulation design and verification
Simulation design: Create a smart component to input the Di1 signal, and use the Di1 signal to simulate the external polishing start signal to
execute the Rotator component and Attach component of the smart component to achieve the visual effect of rotating and polishing the polishing rotor.
In the workstation logic design, the smart component input Di1 signal is associated with the robot Do1 signal, so that the robot signal Do1 can control
the smart component input Di1 signal, thereby controlling the start and stop of the rotation of the polishing rotor.
Verification: In the program of the teaching pendant, first set the pp command to move to Main, and then set the robot startup mode to automatic.
Click play in the simulation of Robotstudio software to verify whether the trajectory is consistent with the assumption, and optimize the path in time for
problems existing in the simulation.
3Summary and outlook
This design is based on the programming simulation of the Yalong Y4-1360A industrial robot deburring system to control the grinding robot workstation.
It covers aspects such as creating a workstation, setting
up tools, creating smart components, creating tool coordinate systems, creating trajectories, programming, simulation design, and verification. Starting
with it, the polishing simulation of the workstation is realized through the smart component function of Robotstudio software. The animation effect is intuitive
and lifelike, which not only facilitates teaching demonstrations, but also facilitates program debugging, and has application value for both production and teaching.
In the planning and design of the workpiece grinding trajectory, according to the different roughness and grinding amount process requirements of the
workpiece, the rotation speed, feed speed, feed amount, and grinding angle of the grinding rotor are also different. The feed amount can be adjusted in
time according to the on-site conditions. , feed speed, rotor speed, grinding angle and other parameters. After appropriate adjustments, the motion trajectory is written with the
corresponding program on the Robotstudio software to further reduce the possibility of robot collisions and singular points contained in the trajectory
during the actual debugging process. ,Optimize paths and improve debugging efficiency.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
Allen Bradley 1794-ASB Remote I/O Adapter
216NG63A HESG441635R1 HESG216877K Auxiliary DC supply unit
216EA62 1MRB178066R1E 1MRB150083R1E 1MRB300162R0008 Analog Input unit
83SR04C-E GJR2390200R1411 GJR2390211R45 Input/output module
8C-PCNT02 51454363-275 C300 Controller Module
PARKER 6K8 1037302 controller
6ES7132-1BH00-0XB0 Digital Output Module
3HAC044075-001/01 ABB Battery Unit
5SHX08F4502-3BHB003387R0101-5SXE05-0151-GVC703AE01 | New original
DS215SDCCG1AZZ01A Mark V Driver control card
IC200CPU001 Compact controller
BCU-02 3AUA0000110429 Control unit
3BHB021400R0002 Power module
3BHE024747R0101 Printed circuit board
PDD405A101 3BHE041626R0101 Control unit
330730-040-01-00 3300 XL 11mm extension cable
51402755-100 Processor card K4LCN-4
IC690RFH008 8 Multi-mode reflection memory hub
1C31203G01 emote Node Controller
51401635-150 High-performance Communication controller
PMAC-2ACC8T DELTA TAU digital-to-analog converter
A06B-6058-H223 servo amplifier
IC693CPU360 Single-slot CPU module
PFXGP4301TADC PROFACE programmable man-machine interface
MV156-AFC input/output module
6181P-17A2MW71AC Industrial computer
IC670ALG240 Analog input module
Pxi-2529 Switch module of the PXI matrix
SPAJ140C-AA overcurrent and ground fault relay
Pxi-6224 PXI counter/timer module
330703-000-050-10-01-05 3300 XL 11mm short range probe
PM654B 3BSE010535R1 Processor module
MPL-B320P-HJ72AA low inertia servo motor
MC-4/11/01/400 ELAU servo Drive
330854-040-25-CN 3300 XL 25mm extension cable
9905-020 Control device
330850-50-00 Short range sensor
TC514V2 3BSE013281R1 AF100 Twisted Pair/Optical modem
330851-02-000-040-10-01-CN 3300 XL 11mm short-range probe
UNS0017A-P VAR.1 HIEE305106R0001 Jumper trigger board
9200-01-02-10-00 dual-line speed seismic detection sensor
UNS0881A-PV2 7.5KV 3BHE033982R0010 Door Drive interface board
330704-000-040-10-02-00 Bentley probe
DSTYW121 voltage transformer unit 3BSE007836R1
SA168 3BSE003389R1 Power unit
SA167 3BSE003390R1 Power unit
TC630 3BSE002253R1 AF100 optical modem
Reviews
There are no reviews yet.