Description
hardware flow control. It is an ideal choice in the field of industrial automation.
According to reports, ABB”s technical expertise and experience in many industries will be combined with Microsoft”s Azure intelligent cloud system and B2B
engineering capabilities to create greater value for customers. Combined with ABB”s more than 70 million connected devices installed globally and more than
70,000 running control systems, ABB and Microsoft will join forces to create one of the world”s largest IIoT industrial cloud platforms.
It is worth noting that IoT expert Guido Jouret (formerly general manager of Cisco’s IoT department) became the group’s chief digital officer on October 1, 2016.
This marks that ABB is accelerating digital transformation and comprehensively building a new “Internet of Things+” ecosystem. ABB also hopes to obtain higher
profits from this, and has proposed a financial target for 2015-2020 of pre-tax profit growth of 11%-16%.
FANUC
FANUC recently established the IoT platform Fanuc Intelligent Edge Link and Drive (FIELD), which uses NVIDIA artificial intelligence system. FIELD can realize the
connection of machine tools, robots, peripheral equipment and sensors in the automation system and provide advanced data analysis to improve the production quality,
efficiency, flexibility and equipment reliability in the production process – thereby improving the overall efficiency of the equipment ( OEE) and promote the improvement of production profits.
The system can also improve robot productivity through artificial intelligence and bring autonomous learning capabilities to automated factory robots around the
world. FANUC will use a series of GPUs and deep learning software designed and produced by NVIDIA to enable AI artificial intelligence to be used in clouds, data centers
and embedded devices.
When talking about the cooperation with FANUC, NVIDIA co-founder and CEO Jensen Huang said that the era of AI artificial intelligence has officially arrived.
Through the deep learning function of GPU, it will stimulate a
new wave of software learning and machine inference calculations. The most exciting of these is the ability of robots to understand their surroundings and
interact with humans. NVIDIA is very happy to work with FANUC, the global leader in automated factories and robots, to build intelligent machines to benefit the future of mankind.
It is reported that FIELD continues the success of the existing Fanuc ZDT (zero downtime function), which effectively combines Cisco cloud technology,
IoT data collection software and point-to-point security. After connecting the robot through the use of an industrial Ethernet switch, it is then connected to Cisco”s UCS server – the system runs
based on FANUC and Cisco”s ZDT data collection software. Automotive industry users can immediately realize reductions in downtime and cost savings after using the system.
FIELD provides users and application developers with advanced machine learning and artificial intelligence capabilities and brings manufacturing to
new heights of productivity and efficiency. Currently, FANUC has applied these new technologies to robotic bulk picking, production anomaly detection and fault
prediction. Because FIELD combines artificial intelligence and cutting-edge computer technology, distributed learning is possible. The operating data of robots and
equipment are processed in real time on the network,
which also enables more intelligent coordination of production between various equipment, making complex production coordination that was previously difficult to
achieve easily completed.
In fact, many years ago, FANUC began to cooperate with Cisco to carry out the “non-stop” zero downTIme plan. In the plan, FANUC and Cisco will join forces to
build an Internet of Things system that will allow FANUC to supervise
every robot in the factory, predict abnormal conditions of the robots, and send more technicians to repair the robots before problems occur. So far, the program has
tested 2,500 robots, including FANUC”s major customer GM General Motors. According to FANUC, the test program saved customers $38 million.
YASKAWA
After talking so much about the Internet of Things strategy of the industrial robot giant, let’s take a break here at Yaskawa and talk about the past.
Midea and KUKA have officially received their marriage certificates, but you must know that as early as August 2015, Midea announced its
robot strategy and established two joint venture subsidiaries with Japan”s Yaskawa Electric.
The two subsidiaries are respectively for industrial robots and service robots, including Guangdong Yaskawa Midea Industrial Robot Co.
, Ltd. (Midea”s equity accounted for 49%) and Guangdong Midea Yaskawa Service Robot Co., Ltd. (Midea”s equity accounted for 60%).
This shows that as early as 2015, Midea was actually “in love” with Yaskawa, but by 2016, she married Kuka.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
3500/44M 176449-03 Speed sensor Bently
3500/42M-01-00 Speed monitor Bently Nevada
3500/33 Bently Nevada 149986-01 preamplifier
3500/33 Bently Nevada preamplifier
3500/25 Bently Nevada Accelerometer sensor
3500/25 149369-01 Speed sensor Bently
350022M-288055-01 Transient data interface Bently
3500/15 Power module Bently Nevada
3500/05-02-04-00 bently Monitoring vibration
330180-51-00 bently preprocessor
Bently 330100-90-01 Vibration sensor
330016-11-01-03-00-00-01 BENTLY NEVADA
2300/25-00 BENTLY monitor module
140734-01 4-channel monitor Bently
133442-01 Output module Bently
125720-01 Bently Nevada channel relay module
3500/65 Bently Nevada monitor
3500/53 Bently Nevada Overspeed detection module
330100-50-05 Bently Nevada preprocessor
177313-01-01 Bently Nevada Vibration monitoring module
149369-01 Bently Nevada Key phase module
143416-01 Bently Nevada sensor
135613-01-00 Bently Nevada High temperature housing
126648-01 Bently Nevada Output module
125840-02 BENTLY Low voltage AC power input module
106M7607-01 Bently Nevada relay
106M1079-01 Bently Nevada Power module
3500/64M 140734-05 Bently Nevada Dynamic Monitor
330878-90-00 Bently Nevada Proximitor Sensor
126599-01 Bently Nevada Module Internal Terminations
3500/40-04-00 Bently Nevada Proximitor Monitor
140734-02 Bently Nevada 3500/42m Proximitor Seismic Monitor
163179-01 Bently Nevada Temperature Monitors
330180-91-RU Bently Nevada 330180 Proximity Sensor
330180-91-05-RU Bently Nevada 330180 Proximity Sensor
3500/15-04-04-00 Bently Nevada Power Supply
330103-00-07-05-02-RU Bently Nevada Extension Cable
177230-01-01-RU Bently Nevada Seismic Transmitter
330130-045-01-05 Bently Nevada Extension Cable
3500/22-01-01-R0 Bently Nevada Transient Data Interface
3500/62-04-R0 Bently Nevada Process Variable Monitor
3500/25-01-05-00 Bently Nevada Enhanced Keyphasor Module
330180-90-00 Bently Nevada 3300 XL Proximitor Sensor
330105-02-12-05-02-00 Bently Nevada Reverse Mount Probes
133442-01 Bently Nevada I/O Module Internal Terminations
60M100-00 Bently Nevada Monitor Controller
133396-01 Overspeed detection I/O module Bently Nevada
NEW BENTLY 3500/22M 138607-01 3500 monitoring system Standard transient data interface module
Bently Nevada 330500-02-CN Piezo-Velocity Sensor
BENTLY 330101-23-39-10-12-CN sensor
Bently Nevada 200200-11-11-05 proTIM-R Module
Bently Nevada 1701/10 FieldMonitor 24-Volt dc Power Supply
Bently Nevada PWA88199-01 Rear Control Panel
Reviews
There are no reviews yet.