Description
hardware flow control. It is an ideal choice in the field of industrial automation.
In the formula, a is the design acceleration/deceleration value: s is the current actual position value of the
elevator: V2 is the maximum speed of the elevator at this position.
Considering that the lifting system needs to enter the parking track at a low crawling speed when entering the
end of the stroke to avoid equipment damage caused by large mechanical impact, therefore, when there are still
1~5m away from the parking position, the lifting speed is limited to 0.5m/ below s.
Since the instantaneous speed before parking is very low, the position accuracy of the system”s parking can
be relatively improved, which is particularly important when the auxiliary shaft is lifted.
2.2 Design and implementation of security protection functions
Mines have particularly strict requirements on safety and reliability of hoist control systems [5]. While ensuring high
reliability of electrical control equipment, the control system also sets up multiple protections in key links where failures
may occur, and detects the actions and feedback signals of these protection devices in real time.
First of all, monitoring the operating status of the elevator is the top priority in the safety protection
function of the elevator control system. In the control system, the operating speed and position of the
motor are monitored at all times, and the current position and speed values are compared with the system”s
designed speed and position curve. Once it is found that the
actual operating speed of the hoist exceeds the designed speed value, immediately Issue an emergency
stop command and strictly ensure that the lifting speed is within the safe monitoring range during the entire
lifting process. At the same time, position detection switches are
arranged at several locations in the wellbore, and these position detection switches correspond to specific
position values and corresponding speed values. When the elevator passes these switches, if it is found through
encoder detection that the actual speed value and position deviate from the values corresponding to the position
detection switch, the control system will also judge that it is in a fault state
and immediately implement an emergency stop.
In order to determine whether the encoder connected to the main shaft of the elevator drum is normal,
two other encoders are installed on the elevator. In this way, the position and speed detection values
of the three encoders are always compared. Once it is found that the deviation between the detection
value of one encoder and the detection value of the other two encoders exceeds the allowable range,
the control system will immediately consider it to have entered a fault state and implement an emergency stop. Protective action.
3 Conclusion
The efficient and safe operation of main well equipment is an important guarantee for its function.
In the application of mine hoist, the 800xA system designed speed curve, self-correction, various
self-diagnosis and protection functions according to the specific process characteristics of the main
shaft mine hoist, which has achieved good results in practical applications.
DS200ADGIH1AAA GE Robot pipe package
DS200ACNAG1ADD GE Main interface circuit board
DS200CTBAG1A Control card piece
DS200CPCAG1A GE Frame interface module
DS200ADPBG1A Measuring photoelectric sensor
DS200ACNAG1A GE Communication card
DS200TCTGG1AFF GE Serial communication mode
PPD113B01-10-150000 3BHE023784R1023 Main interface board of the converter
3BHE024855R0101 UFC921A101 Loop communication interface module
81EU01E-E Positioning module
560CMU05 Digital modulation board
DSQC346U Switch power supply
GRBTU 3BSE013175R1 I/O terminal board
HIEE300024R4 UAA326A04 Communication board
KUC711AE101 3BHB004661R0101 Power supply module
KUC720AE01 3BHB003431R0001 8 channel digital input
KUC755AE105 3BHB005243R0105 Robot IO module
KUC755AE106 3BHB005243R0106 Inverter control panel
PU515A 3BSE032401R1 Communication module
RDCU-02C ABB High speed counting module
RDCU-12C Servo control unit
UAA326A02 Servo control system
UAC318AE Digital signal output module
UAC326AE The I/O board
UAD142A01 3BHE012551R0001 Bus adapter
UAD154A Robot board card
UAD155A0111 3BHE029110R0111 Thyristor module
UBC717BE101 3BHE021887R0101 Programmable controller module
UCD208A101 Current transformer
UCD224A102 Converter main control board
UCD224A103 Robot base plate
UCD240A101 ABB Axial computer board
UDD406A ABB Power module
UFC092BE01 Axial computer board
UFC718AE101 HIEE300936R0101 ABB Driving power supply
DS3800NFIB Mark IV Board
DS3800NFLA Mark IV Board
DS3800NFLA1C1C Mark IV Board
Reviews
There are no reviews yet.