Description
hardware flow control. It is an ideal choice in the field of industrial automation.
3.2 Machine learning
As the functionality of distributed computing tools such as Spark MLLib (http://spark.apache.org/mllib) and SparkR (http://spark.apache
.org/docs/latest/index.html) increases, it becomes It is easier to implement distributed and online machine learning models, such as support
vector machines, gradient boosting trees and decision trees for large amounts of data. Test the impact of different machine parameters and process
measurements on overall product quality, from correlation analysis to analysis of variance and chi-square hypothesis testing to help determine the impact of individual
measurements on product quality. This design trains some classification and regression
models that can distinguish parts that pass quality control from parts that do not. The trained models can be used to infer decision rules. According to the highest purity rule,
purity is defined as Nb/N, where N is the number of products that satisfy the rule and Nb is the total number of defective or bad parts that satisfy the rule.
Although these models can identify linear and nonlinear relationships between variables, they do not represent causal relationships. Causality is critical to
determining the true root cause, using Bayesian causal models to infer causality across all data.
3.3 Visualization
A visualization platform for collecting big data is crucial. The main challenge faced by engineers is not having a clear and comprehensive overview of the complete manufacturing
process. Such an overview will help them make decisions and assess their status before any adverse events occur. Descriptive analytics uses tools such as
Tableau (www.tableau.com) and Microsoft BI (https://powerbi.microsoft.com/en-us) to help achieve this. Descriptive analysis includes many views such as
histograms, bivariate plots, and correlation plots. In addition to visual statistical descriptions,
a clear visual interface should be provided for all predictive models. All measurements affecting specific quality parameters can be visualized and the data
on the backend can be filtered by time.
Excitation system ABB module DI04
Excitation system ABB module DI01
Excitation system ABB module DDO02
Excitation system ABB module DDO01
Excitation system ABB module DDI03
Excitation system ABB module DDI01
Excitation system ABB module DDC779CE102 3BHE027859R0102
Excitation system ABB module DDC779CE102 3BHE027859R0102
Excitation system ABB module DDC779BE02 3BHE006805R0002
Excitation system ABB module DDC779BE02 3BHE006805R0002
Excitation system ABB module DCS150-7E
Excitation system ABB module DCP10
Excitation system ABB module DCP02
Excitation system ABB module DCF803-0050
Excitation system ABB module DCD60X7/14
Excitation system ABB module DC732F 3BDH000375R0001
Excitation system ABB module DC732F
Excitation system ABB module DC723F
Excitation system ABB module DC722F
Excitation system ABB module DC705F
Excitation system ABB module DC532
Excitation system ABB module DC10-12P0-0000
Excitation system ABB module DATX110/3BSC980004R784/3ASC25H209
Excitation system ABB module DATX110,3BSC980004R784,3ASC25H209
Excitation system ABB module DATX100 3ASC25H208
Excitation system ABB module DAPI100 3AST000929R109
Excitation system ABB module DAPC100 3ASC25H203
Excitation system ABB module DAO01
Excitation system ABB module DAI03
Excitation system ABB module DA701F
Excitation system ABB module D674A906U01
Excitation system ABB module D-20-0-1102
Excitation system ABB module CTB810,HN800
Excitation system ABB module CTB810 HN800
Excitation system ABB module CSA464AE HIEE400106R0001
Excitation system ABB module CSA464AE
Excitation system ABB module CSA464AE
Excitation system ABB module CSA463AE HIEE400103R0001
Excitation system ABB module CSA463AE
Excitation system ABB module CSA463AE
Excitation system ABB module CS513K01 3BSE004772R1
Excitation system ABB module CS513 3BSE000435R1
Excitation system ABB module CS513 3BSE000435R1
Excitation system ABB module CS513 (3BSE000435R)
Excitation system ABB module CS513
Excitation system ABB module CS31
Excitation system ABB module CRBX01
Excitation system ABB module CPUM-07 3HNA018559-001
Excitation system ABB module CPM810
Excitation system ABB module CPM810
Excitation system ABB module CP-CMM
Excitation system ABB module CP-C24/5.0
Excitation system ABB module CP-C24/10.0
Excitation system ABB module CP-ARU
Excitation system ABB module CP-ACM
Excitation system ABB module CP800
Excitation system ABB module CP800
Excitation system ABB module CP450-T-ETH
Excitation system ABB module CP450T
Excitation system ABB module COZBU103342/4
Excitation system ABB module COMMANDER 310
Excitation system ABB module COM0032
Excitation system ABB module COM0011 2RAA005844A0007J
Excitation system ABB module CMA198
Excitation system ABB module CMA140 3DDE300420
Excitation system ABB module CMA136 3DDE300416
Excitation system ABB module CMA135 3DDE300415
Excitation system ABB module CMA135 3DDE300415
Excitation system ABB module CMA135
Excitation system ABB module CMA135
Excitation system ABB module CMA132 3DDE300412
Reviews
There are no reviews yet.