Description
hardware flow control. It is an ideal choice in the field of industrial automation.
user experience
Secondly, if power system engineers are to consider the convenience and speed of using the product in the future, operability needs to be improved while ensuring stability.
This requires a simple self-service system and an operation interface with good visual effects that can meet the needs of users. Some operating habits and other aspects
* cut costs
Furthermore, since there are many nodes in the power system, the same product needs to be deployed on many nodes. Then when the quantity of required products increases,
cost issues will inevitably be involved. How to solve the research and development, construction and installation of products and better reduce operating expenses is also a major issue that ABB needs to consider.
Implementation of communication between Omron vision system and ABB industrial robot
introduction
In modern production processes, vision systems are often used to measure and identify products, and then the results are transmitted to industrial robots for work
through communications . In this process, communication settings are very important. This article analyzes the communication implementation process between the Omron
FH-L550 vision system and ABB industrial robots. The main task is to enable the vision system to provide data detection results for ABB industrial robots, and the industrial robots
perform related operations based on the data results. This article mainly discusses the entire process of visual system communication transmission implementation.
1Ethernet-based communication settings in vision software
The main communication methods of Omron FH-L550 vision system controller are as follows [2], namely: parallel communication, PLCLINK communication, Ethernet
communication, EtherCAT communication, and protocol-free communication. These five communication methods have their own characteristics in the communication process.
In modern equipment, Ethernet communication
(Ethernet communication) is the most common, so this article uses the Ethernet communication method as an example to analyze and explain.
First, select the “Tools” option in the main interface, select the “System Settings” menu (Figure 1), after entering the “System Settings” menu, click the “Startup Settings” option,
and select the “Communication Module” tab (Figure 2 ), after completing the above settings, return to the main interface to save the settings (Figure 3). Finally, select the function
menu to perform system restart settings, and wait for the system to complete the restart before proceeding to the next step.
After the system restarts, click the “System Settings” menu again and select the “Ethernet (No Protocol (UDP))” option (Figure 4). In this option, there will be parameter settings
such as IP address and port. What needs to be noted here are the two IP address parameters. The parameters in “Address Setting 2” need to be filled in. The information that needs
to be filled in includes the IP address of the vision controller, subnet mask, default gateway and DNS server.
In the port number setting of “Input/Output Settings” at the bottom of the menu, set the port number for data input with the sensor controller. Note that the port number should
be the same as the host side, and finally complete the settings and corresponding data saving work.
2ABB industrial robot communication settings
First, configure the WAN port IP address for the ABB industrial robot. Select the control panel in the teach pendant, then select configuration, then select communication in
the theme, click IPSetting, set the IP information and click “Change” to save the IP information.
Next, use the SocketCreate robot command to create a new socket using the streaming protocol TCP/IP and assign it to the corresponding variable (Figure 5). Then
use the SocketConnect command to connect the socket to the remote computer. After the communication connection is completed, it is necessary to send and receive
information from the visual system. To send information, use the SocketSend instruction to send data instructions to the remote computer. After the vision system collects
information and makes judgments, the industrial robot system will receive data from the remote computer. The data reception is completed using the
SocketReceive instruction. This instruction stores the data in the corresponding string variable while receiving the data. Useful information needs to be extracted from the
received data information, which requires StrPart to find the specified character position instruction, extract the data at the specified position from the string, and assign the
result to a new string variable. Finally, when the socket connection is not in use, use SocketCloSe to close it.
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
940860010102-VBM030 Ultrasonic diagnostic instrument
51403645-100-SBHM Power control board module
51402455-100-MP-DNCF02-200 Honeywell
51402455-100 MP-DNCF02-200 Power module
51304650-100 HONEYWELL Industrial pressure sensor
51303940-150 Honeywell Cabinet fan assembly with alarm
8141649.53 Main board SEW
8100183 Dual process segment controller KONGSBERG
4000093-110N Bolt type terminal connection
3171197-4 B&w Man-machine interface panel
10313/1/1 Honeywell Terminal module
1030211 Relay module PLC-RPT- 24DC/21
822675X.13.17 servo motor
805405-1R Power module unit
395566-003 HP Server motherboard
3500/44M 176449-03 Speed sensor Bently
3500/42M-01-00 Speed monitor Bently Nevada
3500/33 Bently Nevada 149986-01 preamplifier
3500/33 Bently Nevada preamplifier
3500/25 Bently Nevada Accelerometer sensor
3500/25 149369-01 Speed sensor Bently
350022M-288055-01 Transient data interface Bently
3500/15 Power module Bently Nevada
3500/05-02-04-00 bently Monitoring vibration
330180-51-00 bently preprocessor
330180-50-00 5/8 mm proximity sensor
330105-02-12-05-02-05 Bentley Reverse mounting probe
Bently 330100-90-01 Vibration sensor
330016-11-01-03-00-00-01 BENTLY NEVADA
2300/25-00 BENTLY monitor module
192061B-02 NI acquisition card data connection cable
190065A-01-01-01-00-00 Universal equipment monitor
146031-01 Transient data interface I/O module
140734-01 4-channel monitor Bently
133442-01 Output module Bently
129478-01 High DC power input
128275-01-E Seismic monitor module
125720-01 Bently Nevada channel relay module
086349-002 Measuring Pcb Circuit board
ABB 086329-004 PWA,ECS,END COL
81943A041 Amplifier TC assy
80190-380-01-R Rectifier/charger
80026-044-06-R Power switching module
65040-PACV-AYU2 Control swing valve
41391-454-01-S1FX Control module Allen-Bradley
24765-02-00 Casing expansion sensor system
10350-00104 Ethernet connection Connect.
10244-27-50-01 Liquid level sensor
9907-1183 Control of various turbines
Reviews
There are no reviews yet.