Description
DSTA131 Модуль ввода / вывода ABB
Швейцария, и входит в десятку крупнейших швейцарских транснациональных корпораций.DSTA131
химическая, нефтехимическая, фармацевтическая, целлюлозно – бумажная, нефтепереработка; Оборудование приборов: электронные приборы, телевизоры и оборудование для передачи данных,
генераторы, гидротехнические сооружения; Каналы связи: интегрированные системы, системы сбора и распространения;DSTA131Строительная промышленность: коммерческое и промышленное строительство.
2 Leveraging big data tool chains
After the data collected from the manufacturing product value chain is stored in the database, a data analysis system is required to analyze the data.
The manufacturing data analysis system framework is shown in Figure 1. Data is first extracted, transformed, and loaded (ETL) from different
databases into a distributed file system, such as Hadoop Distributed File System (HDFS) or a NoSQL database (such as MongoDB). Next,
machine learning and analytics tools perform predictive modeling or descriptive analytics. To deploy predictive models, the previously mentioned tools
are used to convert models trained on historical data into open, encapsulated statistical data mining models and associated metadata called Predictive
Model Markup Language (PMML), and Stored in a scoring engine. New
data from any source is evaluated using models stored in the scoring engine [9].
A big data software stack for manufacturing analytics can be a mix of open source, commercial, and proprietary tools. An example of a
manufacturing analytics software stack is shown in Figure 2. It is known from completed projects that existing stack vendors do not currently
offer complete solutions. Although the technology landscape is evolving rapidly, the best option currently is modularity with a focus on truly distributed
components, with the core idea of success being a mix of open source and commercial components [10].
In addition to the architecture presented here, there are various commercial IoT platforms. These include GE”s Predix ( www.predix.com ), Bosch”s IoT
suite (www.bosch-iot-suite.com), IBM”s Bluemix ( www.ibm.com/cloud-computing/ ), ABB based on Microsoft Azure IoT services and people platform
and Amazon’s IoT cloud (https://aws.amazon.com/iot). These platforms offer many standard services for IoT and analytics, including identity management and data
security, which are not covered in the case study here. On the other hand, the best approaches offer flexibility and customizability, making implementation
more efficient than standard commercial solutions. But implementing such a solution may require a capable data science team at the implementation site.
The choice comes down to several factors, non-functional requirements, cost, IoT and analytics.
HE693STP111 GE
HE693SNP900AX GE
HE693SNP232A GE
HE693RTD601 GE
HE697THM160G GE
HE693ADC816D GE
HE693RTM705 GE
HE693RTM705C GE
HE697THM160 GE
HE693RTD600M GE
HE693PBS106C GE
HE693DAC410 GE
HE693PBM101 GE
HE693ADC409A-22 GE
HE693RTD600 GE
HE693STP104AX GE
HE693STP110 GE
369-HI-R-M-F-E-H-E GE
369-HI-R-M-F-0-0 GE
369-LO-R-0-0-E-0-E GE
369-HI-R-0-0-E-0 GE
369-LO-0-M-F-E-0-0 GE
369-HI-R-M-0-E-0-E GE
369-HI-R-M-F-E-H GE
369-HI-0-M-0-E-0-E GE
369-HI-0-M-0-0-H-E GE
369-HI-R-M-0-E-0 GE
GE 369-HI-R-0-0-0-0-E
369-HI-R-M-F-P GE
369-HI-R-0-0-0-0-E GE
369-HI-R-M-F-E-0-E GE
369-LO-R-0-0-0-0 GE
369-HI-R-M-0-E-0-0 GE
GE 369-HI-R-M-0-0
GE 369-HI-0-0-0-0
369-HI-0-M-0-0-0 GE
369-HI-0-M-0-0-0-E GE
369-HI-0-M-F-E-0 GE
369-HI-R-0-0-0 GE
369-HI-R-M-0-0-0-0 GE
369-HI-R-M-0-0-0-E GE
VMIACC-5595-204 GE
ACC-5595-208 350-805595-208N GE
2RCA021397A0001M controller spare parts
AIM0006 2RCA021397A0001L ABB
AIM0006 2RCA021397A0001K ABB
2RCA021397A0001K controller spare parts
2RCA021397A0001M controller spare parts
AIM0006 ABB controller spare parts
AIM0006 2RCA021397A0001M ABB
GE IC693CPU372-AE
IC690RFH008 GE
IC693ACC323B GE
IC693ALG221 GE
IC693APU300K GE
IC693APU301 GE
IC693CHS391 GE
IC693CHS392 GE
Reviews
There are no reviews yet.