Description
hardware flow control. It is an ideal choice in the field of industrial automation.
There is no doubt that power system is a very traditional major in electrical engineering
. After graduation, you are more likely to enter power companies at all levels affiliated to the
State Grid or China Southern Power Grid Co., Ltd. Have you seen that there are many people in
this forum who talk about electricity? The salary is high, so it can be regarded as an iron rice bowl
with guaranteed income regardless of drought or flood; while power electronics and power transmission are a brand-new
major, which is an interdisciplinary subject of electricity, electronics and control theory, involving circuit topology,
automatic theory, analogue, digital and electrical synthesis. Knowledge, practical ability and practical experience determine
the success or failure of the project to some extent. After graduation, students majoring in power electronics generally enter
companies or research institutes, such as the world”s top power electronics companies, such as Emerson, GE, Simens, ABB
, Philips, Oslang, etc., and of course a bunch of domestic companies, generally engaged in switching power supplies and UPS. ,
frequency converter, reactive power compensation, and active filtering, etc. To sum up, if you want to have a good iron job at least for
now, study power systems; if you want to engage in a cutting-edge and challenging sunrise industry, and are not afraid of hardship,
I hope you can study power electronics and electric transmission
after all the hardships. If you don”t get an official position in a power company after three or five years after studying power systems,
your salary at that time may not be as good as that of students who work in power electronics. Power electronics and electric transmission are a brand-new subject. Most of the teachers in China have a background in electrical machinery and may not be able to provide practical guidance.
However, the importance of a mentor is to provide you with broad research resources and lead you into the door of this subject. There are
still some domestic institutions with strong strengths in this subject: the first is undeniably Zhejiang University, with professors Xu Dehong,
Qian Zhaoming, Lu Zhengyu, etc.; the second is Xi”an Jiaotong University, with the highly respected teacher Wang Zhaoan and his two
disciples Liu Jin Jin, Yang Xu; the last one is Yan Yangguang from Nanjing University of Aeronautics and Astronautics and his student
Professor Ruan Xinbo. Of course, the most awesome school in the world is the National Power Electronics Systems Research Center
at Virginia Tech in the United States, where the most awesome Professor Fred.C.Lee Zeyuan Li is located; Of course, the University of
Colorado at Boulder in the United States is not weak either, especially in the direction of digital control of power electronics. Erickson and
Maksimovic, authors of the famous power electronics textbook Fundamental of Power Electronics, are leading figures here. Students who
are interested in engaging in power electronics research abroad can apply to these two schools. In addition, the FREEDM Research Center
of North Carolina State University is also conducting research on power electronics and power electronic devices. There is Professor Alex Q.
Huang [1], the first domestic IGBT manufacturer, and IGBT experts. Inventor Jayant Baliga. However, it is a pity that power electronics is currently
only a technology and cannot be called a scientific subject. That is because a complete and accurate theoretical basis has not yet been formed.
Because if there is no profound theoretical foundation, it cannot be called science. This discipline is currently mainly engaged in the research of
circuit topology and application technology. The current theoretical basis is linear control method and circuit engineering. However, power
electronics should not be regarded as a linear system, because power devices work in a switching state, which is a strongly pathological
nonlinear system. Therefore, it can be said that the current power electronic system based on linear control theory is completely insufficient
and can even lead to some wrong conclusions in some cases. There are currently several research directions in power electronics technology:
High-frequency switching power supply
https://www.xmamazon.com
https://www.xmamazon.com
https://www.plcdcs.com/
www.module-plc.com/
https://www.ymgk.com
MC-TDOD63 HONEYWELL 51309154-275 MU-TDOD63 Digital Output 31-200 Vdc Solid-State
MC-TDOD54 HONEYWELL MU-TDOD54 Digital Output 3-30 Vdc Solid-State FTA
MC-TDOD53 HONEYWELL 51304650-250 Digital Output FTA SS relay
MC-TDOA53 51304648-275 HONEYWELL MU-TDOA53 Digital Output
MC-TDIY62 HONEYWELL MU-TDIY62 Digital Input 24 Vdc FTA
MC-TDID72 HONEYWELL MU-TDIA62 Digital Input 24 Vdc FTA
MC-TDID52 HONEYWELL MU-TDIA72 Digital Input 24 Vdc FTA
MC-TDIA72 HONEYWELL MU-TDIA72 Digital Input lsolated 120 Vac FTA -Packaged
MC-TDIA52 HONEYWELL Digital Input lsolated 120 Vac FTA MU-TDIA52
MC-TAOY53 HONEYWELL MU-TAOY52 Analog Output 16 FTA
MC-TAOY52 HONEYWELL Analog Output 16 FTA MU-TAOY52
MC-TAOX52 HONEYWELL Analog Output FTA MU-TAOX52
MC-TPIX52 HONEYWELL Pulse Input FTA MU-TPIX52
MC-TSTX53 HONEYWELL Smart Transmitter Interface FTA for Redundancy MU-TSTX53
MC-TAIH53 HONEYWELL High Level Analog Input FTA MU-TAIH53
Honeywell MC-TSTX13 Smart Transmitter Interface FTA for Redundancy MU-TSTX13
MC-TSTX03 Smart Transmitter Interface FTA MU-TSTX03
Honeywell MC-TAIH13 High Level Analog Input FTA for Redundancy MU-TAIH13
MC-TAIH03 High Level Analog Input FTA MU-TAIH03
Honeywell MC-TAIH12 High Level Analog Input MU-TAIH12
MC-TAIH02 High Level Analog Input MU-TAIH02
Honeywell MU-KFTA05 FTA I/O Cable 5M
MC-ILDX03 Long Distance I/O Link Extender Pair MU-ILDX03
Honeywell MC-IOLX02 I/O Link Extender Pair−Remote Location MU-IOLX02
MC-IOLM02 I/O Link Extender Pair−Main Location MU-IOLM02 51304419-150
Honeywell MU-PFPX01 Blank Filler Plate for I/O Slot
Honeywell MC-PDOY22 Digital Output 32 Processor MU-PDOY22 80363975-150
Honeywell MC-PDOX02 Digital Output Processor MU-PDOX02
Honeywell MC-PDIY22 Digital Input 24 Vdc Processor 80363972-150 MU-PDIY22
Honeywell MC-PDIS12 Digital input processor MU-PDIS12
Honeywell MC-PDIX02 Digital Input Processor MU-PDIX02
Honeywell MC-PAOX03 Analog Output Processor 80363969-150
Honeywell MC-PAOX03 Analog Output Processor
MC-TAIH52 HONEYWELL High Level Analog Input/STI FTA
honeywell MC-PPIX02 Pulse Input Processor (8 Inputs) MU-PPIX02
honeywell MC-PRHM01Remote Hardened Multiplexer IOP MU-PRHM01
honeywell MC-PAIL02 Analog input processor 51304362-350
honeywell MC-PLAM02 Analog Input Multiplexer Processor MU-PLAM02
Honeywell MC-PSIM11 Serial Interface Processor (16 Points/Port) 51304362-350
honeywell MC-PSDX02 51304362-250 Output 8-Point Processor MU-PSDX02
honeywell Processor 16 Inputs MC-PSTX03 51304516-250
honeywell MC-PDIX02 51304362-150 Analog input module
SAIA PCD3.W315 Number of inputs (channels)
DELTA TAU PMAC-2-ACC8T Control board
Automotion ALC12DE-010-1312 Automatic motion servo amplifier
PTM PSMU-350-3 Drive sensor
PROSOFT MVI56E-MNET Network interface module MVI56-PDPS
Reviews
There are no reviews yet.