Description
IC697VRM015 General Electric
высотой 3U, расположенный в раме управления под DSPX.
волоконно – оптический разъем на передней панели и передаются в модуль обнаружения заземления.
ABB: Запасные части для промышленных роботов серии DSQC, Bailey INFI 90, IGCT, например: 5SHY6545L0001 AC1027001R0101 5SXE10 – 0181, 5SHY3545 L0009, 5SHI3545L0010 3BHB013088 R0001 3BHE009681R0101 GVC750BE101, PM866, PM861K01, PM864, PM510V16, PPD512, PPPD113, PP836A, P865A, 877, PPP881, PPPP885, PPSL500000 4 3BHL00390P0104 5SGY35L4510 и т.д.
General Electric: запасные части, такие как модули, карты и приводы. Например: VMVME – 7807, VMVME – 7750, WES532 – 111, UR6UH, SR469 – P5 – HI – A20, IS230SRTDH2A, IS220PPDAH1B, IS215UCVEH2A, IC698CPE010, IS200SRTDH2ACB и т.д.
Система Bently Nevada: 350 / 3300 / 1900, предохранительные зонды и т.д., например: 3500 / 22M, 3500 / 32, 3500 / 15, 3500 / 23500 / 42M, 1900 / 27 и т.д.
Системы Invis Foxboro: Серия I / A, управление последовательностью FBM, трапециевидное логическое управление, обработка отзыва событий, DAC,
обработка входных / выходных сигналов, передача и обработка данных, такие как FCP270 и FCP280, P0904HA, E69F – TI2 – S, FBM230 / P0926GU, FEM100 / P0973CA и т.д.
Invis Triconex: Модуль питания, модуль CPU, модуль связи, модуль ввода – вывода, например 300830937214351B, 3805E, 831235114355X и т.д.
Вудворд: контроллер местоположения SPC, цифровой контроллер PEAK150, например 8521 – 0312 UG – 10D, 9907 – 149, 9907 – 162, 9907 – 164, 9907 – 167, TG – 13 (8516 – 038), 8440 – 1713 / D, 9907 – 018 2301A, 5466 – 258, 8200 – 226 и т.д.
Hima: модули безопасности, такие как F8650E, F8652X, F8627X, F8678X, F3236, F6217, F6214, Z7138, F8651X, F8650X и т.д.
Honeywell: Все платы DCS, модули, процессоры, такие как: CC – MCAR01, CC – PAIH01, CC – PAIH02, CC – PAIH51, CC – PAIX02, CC – PAON01, CC – PCF901, TC – CR014, TC – PD011, CC – PCNT02 и т.д.
Motorola: серии MVME162, MVME167, MVME172, MVME177, такие как MVME5100, MVME5500 – 0163, VME172PA – 652SE, VME162PA – 344SE – 2G и другие.
Xycom: I / O, платы VME и процессоры, такие как XVME – 530, XVME – 674, XVME – 957, XVME – 976 и т.д.
Коул Морган: Сервоприводы и двигатели, такие как S72402 – NANA, S6201 – 550, S20330 – SRS, CB06551 / PRD – B040SSIB – 63 и т. Д.
Bosch / Luxer / Indramat: модуль ввода / вывода, контроллер PLC, приводной модуль, MSK060C – 0600 – NN – S1 – UP1 – NNN, VT2000 – 52 / R900033828, MHD041B – 144 – PG1 – UN и т.д.
0 Preface
Germany”s “Industry 4.0″ and the United States” “Industrial Internet” will
restructure the world”s industrial layout and economic structure, bringing different challenges and
opportunities to countries around the world. The State Council of China issued “Made in China 2025” as an action plan
for the first ten years of implementing the strategy of manufacturing a strong country, which will accelerate the integrated
development of IoT technology and manufacturing technology [1]. IoT collects data on machine operations, material usage
, facility logistics, etc., bringing transparency to operators. This transparency is brought about by the application of data analytics,
which refers to the use of statistical and machine learning methods to discover different data characteristics and patterns. Machine
learning technology is increasingly used in various manufacturing applications, such as predictive maintenance, test time reduction,
supply chain optimization, and process optimization, etc. [2-4]. The manufacturing process of enterprises has gradually developed from
the traditional “black box” model to the “multi-dimensional, transparent and ubiquitous perception” model [5].
1 Challenges facing manufacturing analysis
The goal of manufacturing analytics is to increase productivity by reducing costs without compromising quality:
(1) Reduce test time and calibration, including predicting test results and calibration parameters;
(2) Improve quality and reduce the cost of producing scrap (bad parts) by identifying the root causes of scrap and optimizing
the production line on its own;
(3) Reduce warranty costs, use quality testing and process data to predict field failures, and cross-value stream analysis;
(4) Increase throughput, benchmark across production lines and plants, improve first-pass rates, improve first-pass throughput,
and identify the cause of performance bottlenecks such as overall equipment effectiveness (OEE) or cycle time;
GE VME7807RC-350-00780-411000
GE Single Board Computer VMIVME-7807-411001
VMIVME-9304 GE
VMIVME-332-003230-000E GE
VMIVME-3230 GE
VMIVME-5521 GE
VMIVME-7587 GE
VMIVME-2128 GE
VMIVME-1182 GE
VMIVME-2528 GE
VMIVME-7671-421000 GE
VMIVME-5599 GE
VMIVME-2540 GE
VMIVME-1128 GE
VMIVME-7750-744000 GE
VMIVME-7614-132/350-017614-132D GE
VMIVME-2536 GE
VMIVME-2540-000001 GE
VMIVME-2540 GE
VMIVME-7486 GE
VMIVME-7697350350-017697-350 J GE
VMIVME-7671 GE
VMIVME-4116 GE
VMIVME3113A GE
IC698CMX016 VMIVME-5567-000 350-005567-000
VMIVME-5567-000 GE
IC698CMX016 GE
VMIVME Model 2533 Assy No 332-002533-010E
VMIVME-2128 GE
VMIVME-2510B GE
VMIVME-2536 GE
VMIVME-4140 GE
VMIVME-7452 GE
VMIVME-7455 GE
VMIVME-7459 GE
VMIVME-7486 GE
VMIVME-7658-330/350-007658-330 E GE
VMIVME-7658-330 GE
VMIVME-7658 GE
VMIVME-7698 VMIVME-7698-140 350-017698-140 A
VMIVME-7698-140 GE
VMIVME-7698 GE
VMIVME-7700 350-007700-111000 H GE
VMIVME-7700 GE
VMIVME-7750 VMIVME-7750-760000 350-027750-760000 N
VMIVME-7750-760000 GE
VMIVME-7750 GE
GE Single Board Computer VMIVME-7807
GE microprocessor motherboard VMIVME-7807RC
DS215SDCCG3AZZ01B GE
DS215KLDBG1AZZ03A GE
DS215DMCBG1AZZ03B GE
DS215SLCCG2AZZ01B GE
DS200KLDAG1ACC GE
DS215KLDAG1AZZ02A GE
DS215KLDBG1AZZ03B GE
DS215GHDQG5AZZ01 GE
DS215TCEAG1BZ01A GE
DS215SLCCGZAZZ01B GE
DS215DMCCBG1AZZ03B GE
DS215DMCBG1AZZ03A GE
мы организуем фото на складе, чтобы подтвердить
чтобы вернуть их вам. Конечно, мы ответим на ваши озабоченности как можно скорее.
Reviews
There are no reviews yet.