Description
hardware flow control. It is an ideal choice in the field of industrial automation.
Why is the industrial Internet inseparable from industrial control?
ABB Global CEO Ulrich Spiesshofer recently accepted an exclusive interview with a reporter from Caijing in New York. He believes that the global manufacturing industry is
undergoing drastic changes. The era of labor arbitrage is over. Labor costs are no longer the focus of competition. The future of manufacturing lies in In factories that are smaller,
closer to consumers, and more agile. Artificial intelligence ( AI ) is the most important technology shaping the future of manufacturing. Currently, AI technology is mainly used in the
consumer field, but its large-scale application in the industrial field and among enterprises is more critical.
Digital transformation has been a keyword for global manufacturing giants in the past two years, and the industrial Internet is the implementation form of digital transformation.
General Electric (GE), Siemens and ABB are all leaders in this regard . Spiesshofer believes that GE”s industrial Internet only collects data and analyzes but cannot control it.
As the world”s two largest industrial automation suppliers, ABB and Siemens have the ability to control equipment, which is a significant difference from GE.
ABB is headquartered in Zurich, Switzerland. Its history can be traced back to the 1880s. It started from the original electrical manufacturing business and has developed into an international manufacturing
giant including electrical products, robotics and motion control, industrial automation and power grid. In 2017, ABB”s revenue was US$34.3 billion, ranking 341st among the
Fortune 500 companies. Spiesshofer has served as CEO for nearly five years since taking office in September 2013.
Below are the details of the interview.
The era of labor arbitrage is over
Caijing: Is 2018 a good year for the manufacturing industry?
Spiesshofer: From a global perspective, GDP is growing and consumption is also growing. Overall positive.
Caijing: What crucial changes are taking place in the manufacturing industry?
Spiesshofer: The jobs of the future will be different from the jobs of the past. In the Middle Ages, craftsmen moved between villages, taking their tools with them to work where
there was demand; later we invented factories, integrated supply and demand, and invented logistics; later people realized that there was labor arbitrage (Labor Arbitrage, Refers to
the existence of moving industries that have lost technological advantages and technical barriers to areas with low labor prices to increase profits by reducing labor costs), so we place
factories in emerging countries to benefit from labor arbitrage.
Now, with the development of modern automation and robotics, we can break this picture and bring value addition closer to demand. I think the future of manufacturing is
in factories that are smaller, closer to consumers, and more agile. I believe that the global logistics chain will also be reduced in the future because we will produce products closer to consumers.
The era of labor arbitrage shaping the global manufacturing landscape will be over because we can offset this arbitrage.
Recently we opened a new factory in Germany. Due to the adoption of intelligent automation technology, its unit cost is exactly the same as that of the best factories in
China. So I think the local market will be repositioned in the future, and the positioning of competitiveness will also change from just considering costs to focusing more on technology and value.
Caijing: Many people are complaining that automation has caused people to lose their jobs, and artificial intelligence technology has made the complaints louder
. But these new technologies are also creating new jobs. How do you see the relationship between the two?
Spiesshofer: In 1990, one-third of the world”s population lived below the extreme poverty line. Today, only 8% rely on technology. In fact, countries with the
highest robot densities, such as Germany, South Korea, Singapore, and Japan, also have the lowest unemployment rates. Robots combined with educated people can create prosperity, produce more
affordable goods, and lead to economic growth. Government, education and business need to work together to keep up with the changing world.
Clearly, millions of jobs are disappearing, but millions of new ones are being created. Taking our own business as an example, we used to have many
employees doing metal casting and forging work, but now these tasks are automated. But now we have more employees working in the service industry, developing apps, and working with customers.
So I think we should not be afraid of change, but should lead our employees to manage change and promote change. If we succeed, global employment will eventually grow.
Excitation system ABB module 3HAC13063-3
Excitation system ABB module 3HAC13055-1
Excitation system ABB module 3HAC13039-2
Excitation system ABB module 3HAC13031-4
Excitation system ABB module 3HAC13031-3
Excitation system ABB module 3HAC12998-1
Excitation system ABB module 3HAC12978-1
Excitation system ABB module 3HAC12965-1
Excitation system ABB module 3HAC12928-1
Excitation system ABB module 3HAC12837-7
Excitation system ABB module 3HAC12738-1
Excitation system ABB module 3HAC12738-1
Excitation system ABB module 3HAC12707-4
Excitation system ABB module 3HAC12707-4
Excitation system ABB module 3HAC12677-1
Excitation system ABB module 3HAC12677-1
Excitation system ABB module 3HAC12670-1
Excitation system ABB module 3HAC12651-2
Excitation system ABB module 3HAC12609-3
Excitation system ABB module 3HAC12591-2
Excitation system ABB module 3HAC12532-1
Excitation system ABB module 3HAC12483-1
Excitation system ABB module 3HAC12475-6
Excitation system ABB module 3HAC12434-1
Excitation system ABB module 3HAC1236-1
Excitation system ABB module 3HAC12311-50
Excitation system ABB module 3HAC12271-2
Excitation system ABB module 3HAC12147-1
Excitation system ABB module 3HAC12146-4
Excitation system ABB module 3HAC12120-1
Excitation system ABB module 3HAC11928-1
Excitation system ABB module 3HAC11911-2
Excitation system ABB module 3HAC11819-1
Excitation system ABB module 3HAC1179-1
Excitation system ABB module 3HAC1177-1
Excitation system ABB module 3HAC11761-1
Excitation system ABB module 3HAC11720-1
Excitation system ABB module 3HAC11668-1
Excitation system ABB module 3HAC1164-1
Excitation system ABB module 3HAC11601-1
Excitation system ABB module 3HAC1150-1
Excitation system ABB module 3HAC11488-1
Excitation system ABB module 3HAC11482-1
Excitation system ABB module 3HAC11283-2
Excitation system ABB module 3HAC11282-2
Excitation system ABB module 3HAC11282-1
Excitation system ABB module 3HAC11068-1
Excitation system ABB module 3HAC11060-1
Excitation system ABB module 3HAC1103-1
Excitation system ABB module 3HAC10996-1
Excitation system ABB module 3HAC10939-8
Excitation system ABB module 3HAC10847-1
Excitation system ABB module 3HAC10847-1
Excitation system ABB module 3HAC10834-1
Excitation system ABB module 3HAC10828-16
Excitation system ABB module 3HAC10828-15
Excitation system ABB module 3HAC10814-1
Excitation system ABB module 3HAC1079-1
Excitation system ABB module 3HAC10746-7
Excitation system ABB module 3HAC10746-6
Excitation system ABB module 3HAC10674-1
Excitation system ABB module 3HAC10592-1
Excitation system ABB module 3HAC10583-7
Excitation system ABB module 3HAC10583-5
Excitation system ABB module 3HAC10583-4
Excitation system ABB module 3HAC10583-3
Excitation system ABB module 3HAC10583-2
Excitation system ABB module 3HAC10583-16
Excitation system ABB module 3HAC10583-14
Excitation system ABB module 3HAC10583-12
Excitation system ABB module 3HAC10557-1
Excitation system ABB module 3HAC10543-1
Reviews
There are no reviews yet.